File size: 34,955 Bytes
2642927 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 |
# -*- coding: utf-8 -*-
"""CHULA Gino_Parkinson.ipynb
Automatically generated by Colaboratory.
Original file is located at
https://colab.research.google.com/drive/1XPgGZILiBbDji5G0dHoFV7OQaUwGM3HJ
"""
!pip install SoundFile transformers scikit-learn
from google.colab import drive
drive.mount('/content/drive')
import matplotlib.pyplot as plt
import numpy as np
import os
import soundfile as sf
import torch
import torch.nn as nn
import torch.nn.functional as F
from torch.utils.data import Dataset, DataLoader
from transformers import Wav2Vec2ForCTC, Wav2Vec2Processor, Wav2Vec2ForSequenceClassification
from sklearn.model_selection import train_test_split
import re
from collections import Counter
from sklearn.metrics import classification_report
# Custom Dataset class
class DysarthriaDataset(Dataset):
def __init__(self, data, labels, max_length=100000):
self.data = data
self.labels = labels
self.max_length = max_length
self.processor = Wav2Vec2Processor.from_pretrained("facebook/wav2vec2-base-960h")
def __len__(self):
return len(self.data)
def __getitem__(self, idx):
try:
wav_data, _ = sf.read(self.data[idx])
except:
print(f"Error opening file: {self.data[idx]}. Skipping...")
return self.__getitem__((idx + 1) % len(self.data))
inputs = self.processor(wav_data, sampling_rate=16000, return_tensors="pt", padding=True)
input_values = inputs.input_values.squeeze(0) # Squeeze the batch dimension
if self.max_length - input_values.shape[-1] > 0:
input_values = torch.cat([input_values, torch.zeros((self.max_length - input_values.shape[-1],))], dim=-1)
else:
input_values = input_values[:self.max_length]
# Remove unsqueezing the channel dimension
# input_values = input_values.unsqueeze(0)
# label = torch.zeros(32,dtype=torch.long)
# label[self.labels[idx]] = 1
### CHANGES: simply return the label as a single integer
return {"input_values": input_values}, self.labels[idx]
# return {"input_values": input_values, "audio_path": self.data[idx]}, self.labels[idx]
###
def train(model, dataloader, criterion, optimizer, device, loss_vals, epochs, current_epoch):
model.train()
running_loss = 0
for i, (inputs, labels) in enumerate(dataloader):
inputs = {key: value.squeeze().to(device) for key, value in inputs.items()}
labels = labels.to(device)
optimizer.zero_grad()
logits = model(**inputs).logits
loss = criterion(logits, labels)
loss.backward()
optimizer.step()
# append loss value to list
loss_vals.append(loss.item())
running_loss += loss.item()
if i % 10 == 0: # Update the plot every 10 iterations
plt.clf() # Clear the previous plot
plt.plot(loss_vals)
plt.xlim([0, len(dataloader)*epochs])
plt.ylim([0, max(loss_vals) + 2])
plt.xlabel('Training Iterations')
plt.ylabel('Loss')
plt.title(f"Training Loss at Epoch {current_epoch + 1}")
plt.pause(0.001) # Pause to update the plot
avg_loss = running_loss / len(dataloader)
print(f"Average Loss after Epoch {current_epoch + 1}: {avg_loss}\n")
return avg_loss
def predict(model, file_path, processor, device, max_length=100000): ### CHANGES: added max_length as an argument.
model.eval()
with torch.no_grad():
wav_data, _ = sf.read(file_path)
inputs = processor(wav_data, sampling_rate=16000, return_tensors="pt", padding=True)
# inputs = {key: value.squeeze().to(device) for key, value in inputs.items()}
### NEW CODES HERE
input_values = inputs.input_values.squeeze(0) # Squeeze the batch dimension
if max_length - input_values.shape[-1] > 0:
input_values = torch.cat([input_values, torch.zeros((max_length - input_values.shape[-1],))], dim=-1)
else:
input_values = input_values[:max_length]
input_values = input_values.unsqueeze(0).to(device)
inputs = {"input_values": input_values}
###
logits = model(**inputs).logits
# _, predicted = torch.max(logits, dim=0)
### NEW CODES HERE
# Remove the batch dimension.
logits = logits.squeeze()
predicted_class_id = torch.argmax(logits, dim=-1).item()
###
# return predicted.item()
return predicted_class_id
def evaluate(model, dataloader, criterion, device):
model.eval()
running_loss = 0
correct_predictions = 0
total_predictions = 0
wrong_files = []
all_labels = []
all_predictions = []
with torch.no_grad():
for inputs, labels in dataloader:
inputs = {key: value.squeeze().to(device) for key, value in inputs.items()}
labels = labels.to(device)
logits = model(**inputs).logits
loss = criterion(logits, labels)
running_loss += loss.item()
_, predicted = torch.max(logits, 1)
correct_predictions += (predicted == labels).sum().item()
total_predictions += labels.size(0)
wrong_idx = (predicted != labels).nonzero().squeeze().cpu().numpy()
if wrong_idx.ndim > 0:
for idx in wrong_idx:
wrong_files.append(dataloader.dataset.data[idx])
elif wrong_idx.size > 0:
wrong_files.append(dataloader.dataset.data[wrong_idx])
all_labels.extend(labels.cpu().numpy())
all_predictions.extend(predicted.cpu().numpy())
avg_loss = running_loss / len(dataloader)
accuracy = correct_predictions / total_predictions
return avg_loss, accuracy, wrong_files, np.array(all_labels), np.array(all_predictions)
def get_wav_files(base_path):
wav_files = []
for subject_folder in os.listdir(base_path):
subject_path = os.path.join(base_path, subject_folder)
if os.path.isdir(subject_path):
for wav_file in os.listdir(subject_path):
if wav_file.endswith('.wav'):
wav_files.append(os.path.join(subject_path, wav_file))
return wav_files
def get_torgo_data(dysarthria_path, non_dysarthria_path):
dysarthria_files = [os.path.join(dysarthria_path, f) for f in os.listdir(dysarthria_path) if f.endswith('.wav')]
non_dysarthria_files = [os.path.join(non_dysarthria_path, f) for f in os.listdir(non_dysarthria_path) if f.endswith('.wav')]
data = dysarthria_files + non_dysarthria_files
labels = [1] * len(dysarthria_files) + [0] * len(non_dysarthria_files)
train_data, test_data, train_labels, test_labels = train_test_split(data, labels, test_size=0.2, stratify=labels)
train_data, val_data, train_labels, val_labels = train_test_split(train_data, train_labels, test_size=0.25, stratify=train_labels) # 0.25 x 0.8 = 0.2
return train_data, val_data, test_data, train_labels, val_labels, test_labels
dysarthria_path = "/content/drive/MyDrive/RECORDINGS_ANALYSIS/SP_ANALYSIS"
non_dysarthria_path = "/content/drive/MyDrive/RECORDINGS_ANALYSIS/CT_ANALYSIS"
dysarthria_files = get_wav_files(dysarthria_path)
non_dysarthria_files = get_wav_files(non_dysarthria_path)
data = dysarthria_files + non_dysarthria_files
labels = [1] * len(dysarthria_files) + [0] * len(non_dysarthria_files)
train_data, test_data, train_labels, test_labels = train_test_split(data, labels, test_size=0.2, stratify=labels)
train_data, val_data, train_labels, val_labels = train_test_split(train_data, train_labels, test_size=0.25, stratify=train_labels) # 0.25 x 0.8 = 0.2
train_dataset = DysarthriaDataset(train_data, train_labels)
test_dataset = DysarthriaDataset(test_data, test_labels)
val_dataset = DysarthriaDataset(val_data, val_labels) # Create a validation dataset
train_loader = DataLoader(train_dataset, batch_size=16, drop_last=False)
test_loader = DataLoader(test_dataset, batch_size=16, drop_last=False)
validation_loader = DataLoader(val_dataset, batch_size=16, drop_last=False) # Use the validation dataset for the validation_loader
""" dysarthria_path = "/content/drive/MyDrive/torgo_data/dysarthria_male/training"
non_dysarthria_path = "/content/drive/MyDrive/torgo_data/non_dysarthria_male/training"
dysarthria_files = [os.path.join(dysarthria_path, f) for f in os.listdir(dysarthria_path) if f.endswith('.wav')]
non_dysarthria_files = [os.path.join(non_dysarthria_path, f) for f in os.listdir(non_dysarthria_path) if f.endswith('.wav')]
data = dysarthria_files + non_dysarthria_files
labels = [1] * len(dysarthria_files) + [0] * len(non_dysarthria_files)
train_data, test_data, train_labels, test_labels = train_test_split(data, labels, test_size=0.2)
train_dataset = DysarthriaDataset(train_data, train_labels)
test_dataset = DysarthriaDataset(test_data, test_labels)
train_loader = DataLoader(train_dataset, batch_size=8, drop_last=True)
test_loader = DataLoader(test_dataset, batch_size=8, drop_last=True)
validation_loader = DataLoader(test_dataset, batch_size=8, drop_last=True)
dysarthria_validation_path = "/content/drive/MyDrive/torgo_data/dysarthria_male/validation"
non_dysarthria_validation_path = "/content/drive/MyDrive/torgo_data/non_dysarthria_male/validation"
dysarthria_validation_files = [os.path.join(dysarthria_validation_path, f) for f in os.listdir(dysarthria_validation_path) if f.endswith('.wav')]
non_dysarthria_validation_files = [os.path.join(non_dysarthria_validation_path, f) for f in os.listdir(non_dysarthria_validation_path) if f.endswith('.wav')]
validation_data = dysarthria_validation_files + non_dysarthria_validation_files
validation_labels = [1] * len(dysarthria_validation_files) + [0] * len(non_dysarthria_validation_files)"""
device = torch.device("cuda" if torch.cuda.is_available() else "cpu")
# model = Wav2Vec2ForCTC.from_pretrained("facebook/wav2vec2-base-960h").to(device)
# model.classifier = nn.Linear(model.config.hidden_size, 2).to(device)
### NEW CODES
# It seems like the classifier layer is excluded from the model's forward method (i.e., model(**inputs)).
# That's why the number of labels in the output was 32 instead of 2 even when you had already changed the classifier.
# Instead, huggingface offers the option for loading the Wav2Vec model with an adjustable classifier head on top (by setting num_labels).
model = Wav2Vec2ForSequenceClassification.from_pretrained("facebook/wav2vec2-base-960h", num_labels=2).to(device)
##
model_path = "/content/dysarthria_classifier1.pth"
if os.path.exists(model_path):
print(f"Loading saved model {model_path}")
model.load_state_dict(torch.load(model_path))
criterion = nn.CrossEntropyLoss()
optimizer = torch.optim.Adam(model.parameters(), lr=1e-5)
from torch.optim.lr_scheduler import StepLR
scheduler = StepLR(optimizer, step_size=5, gamma=0.1)
# dysarthria_validation_path = "/content/drive/MyDrive/RECORDINGS_ANALYSIS/SP_ANALYSIS/testing"
# non_dysarthria_validation_path = "/content/drive/MyDrive/RECORDINGS_ANALYSIS/CT_ANALYSIS/testing"
#dysarthria_validation_files = get_wav_files(dysarthria_validation_path)
# non_dysarthria_validation_files = get_wav_files(non_dysarthria_validation_path)
#validation_data = dysarthria_validation_files + non_dysarthria_validation_files
#validation_labels = [1] * len(dysarthria_validation_files) + [0] * len(non_dysarthria_validation_files)
epochs = 10
plt.ion()
fig, ax = plt.subplots()
x_vals = np.arange(len(train_loader)*epochs)
loss_vals = []
for epoch in range(epochs):
train_loss = train(model, train_loader, criterion, optimizer, device, loss_vals, epochs, epoch)
print(f"Epoch {epoch + 1}, Train Loss: {train_loss}")
val_loss, val_accuracy, wrong_files, true_labels, pred_labels = evaluate(model, validation_loader, criterion, device)
print(f"Epoch {epoch + 1}, Validation Loss: {val_loss}, Validation Accuracy: {val_accuracy:.2f}")
print("Misclassified Files")
for file_path in wrong_files:
print(file_path)
sentence_pattern = re.compile(r"_(\d+)\.wav$")
sentence_counts = Counter()
for file_path in wrong_files:
match = sentence_pattern.search(file_path)
if match:
sentence_number = int(match.group(1))
sentence_counts[sentence_number] += 1
total_wrong = len(wrong_files)
print("Total wrong files:", total_wrong)
print()
for sentence_number, count in sentence_counts.most_common():
percent = count / total_wrong * 100
print(f"Sentence {sentence_number}: {count} ({percent:.2f}%)")
scheduler.step()
print(classification_report(true_labels, pred_labels, target_names=['non_dysarthria', 'dysarthria']))
audio_file = "/content/drive/MyDrive/torgo_data/dysarthria_male/validation/M01_Session1_0005.wav"
predicted_label = predict(model, audio_file, train_dataset.processor, device)
print(f"Predicted label: {predicted_label}")
# Test on a specific audio file
##audio_file = "/content/drive/MyDrive/torgo_data/dysarthria_male/validation/M01_Session1_0005.wav"
##predicted_label = predict(model, audio_file, train_dataset.processor, device)
##print(f"Predicted label: {predicted_label}")
torch.save(model.state_dict(), "dysarthria_classifier1.pth")
print("Predicting...")
"""#audio aug"""
!pip install audiomentations
from audiomentations import Compose, PitchShift, TimeStretch
augmenter = Compose([
PitchShift(min_semitones=-2, max_semitones=2, p=0.1),
TimeStretch(min_rate=0.9, max_rate=1.1, p=0.1)
])
# from torch.optim.lr_scheduler import StepLR
# scheduler = StepLR(optimizer, step_size=2, gamma=0.5)
from transformers import get_linear_schedule_with_warmup
# Define the total number of training steps
# It is usually the number of epochs times the number of batches per epoch
num_training_steps = epochs * len(train_loader)
# Define the number of warmup steps
# Usually set to a fraction of total_training_steps such as 0.1 * num_training_steps
num_warmup_steps = int(num_training_steps * 0.3)
# Create the learning rate scheduler
scheduler = get_linear_schedule_with_warmup(optimizer, num_warmup_steps=num_warmup_steps, num_training_steps=num_training_steps)
model = Wav2Vec2ForSequenceClassification.from_pretrained("facebook/wav2vec2-base-960h", num_labels=2).to(device)
##
model_path = "/content/models/my_model_06/pytorch_model.bin"
if os.path.exists(model_path):
print(f"Loading saved model {model_path}")
model.load_state_dict(torch.load(model_path))
criterion = nn.CrossEntropyLoss()
optimizer = torch.optim.Adam(model.parameters(), lr=1e-5)
import numpy as np
def trainaug(model, dataloader, criterion, optimizer, device, loss_vals, epochs, current_epoch):
model.train()
running_loss = 0
for i, (inputs, labels) in enumerate(dataloader):
inputs = {key: value.squeeze().to(device) for key, value in inputs.items() if torch.is_tensor(value)}
labels = labels.to(device)
# Apply audio augmentation
augmented_audio = []
for audio in inputs['input_values']:
# The augmenter works with numpy arrays, so we need to convert the tensor to a numpy array
audio_np = audio.cpu().numpy()
# Apply the augmentation
augmented = augmenter(audio_np, sample_rate=16000) # Assuming a sample rate of 16000Hz
augmented_audio.append(augmented)
# Convert the list of numpy arrays back to a tensor
inputs['input_values'] = torch.from_numpy(np.array(augmented_audio)).to(device)
optimizer.zero_grad()
logits = model(**inputs).logits
loss = criterion(logits, labels)
loss.backward()
optimizer.step()
# append loss value to list
loss_vals.append(loss.item())
running_loss += loss.item()
if i % 10 == 0: # Update the plot every 10 iterations
plt.clf() # Clear the previous plot
plt.plot(loss_vals)
plt.xlim([0, len(dataloader)*epochs])
plt.ylim([0, max(loss_vals) + 2])
plt.xlabel('Training Iterations')
plt.ylabel('Loss')
plt.title(f"Training Loss at Epoch {current_epoch + 1}")
plt.pause(0.001) # Pause to update the plot
avg_loss = running_loss / len(dataloader)
print(f"Average Loss after Epoch {current_epoch + 1}: {avg_loss}\n")
return avg_loss
epochs = 20
plt.ion()
fig, ax = plt.subplots()
x_vals = np.arange(len(train_loader)*epochs)
loss_vals = []
for epoch in range(epochs):
train_loss = trainaug(model, train_loader, criterion, optimizer, device, loss_vals, epochs, epoch)
print(f"Epoch {epoch + 1}, Train Loss: {train_loss}")
val_loss, val_accuracy, wrong_files, true_labels, pred_labels = evaluate(model, validation_loader, criterion, device)
print(f"Epoch {epoch + 1}, Validation Loss: {val_loss}, Validation Accuracy: {val_accuracy:.2f}")
print("Misclassified Files")
for file_path in wrong_files:
print(file_path)
sentence_pattern = re.compile(r"_(\d+)\.wav$")
sentence_counts = Counter()
for file_path in wrong_files:
match = sentence_pattern.search(file_path)
if match:
sentence_number = int(match.group(1))
sentence_counts[sentence_number] += 1
total_wrong = len(wrong_files)
print("Total wrong files:", total_wrong)
print()
for sentence_number, count in sentence_counts.most_common():
percent = count / total_wrong * 100
print(f"Sentence {sentence_number}: {count} ({percent:.2f}%)")
scheduler.step()
print(classification_report(true_labels, pred_labels, target_names=['non_dysarthria', 'dysarthria']))
audio_file = "/content/drive/MyDrive/torgo_data/dysarthria_male/validation/M01_Session1_0005.wav"
# predicted_label = predict(model, audio_file, train_dataset.processor, device)
# print(f"Predicted label: {predicted_label}")
# Test on a specific audio file
##audio_file = "/content/drive/MyDrive/torgo_data/dysarthria_male/validation/M01_Session1_0005.wav"
##predicted_label = predict(model, audio_file, train_dataset.processor, device)
##print(f"Predicted label: {predicted_label}")
import re
from collections import Counter
import matplotlib.pyplot as plt
import numpy as np
from sklearn.metrics import classification_report
# Define the pattern to extract the sentence number from the file path
sentence_pattern = re.compile(r"_(\d+)\.wav$")
# Counter for the total number of each sentence type in the dataset
total_sentence_counts = Counter()
for file_path in train_loader.dataset.data: # Access the file paths directly
match = sentence_pattern.search(file_path)
if match:
sentence_number = int(match.group(1))
total_sentence_counts[sentence_number] += 1
epochs = 1
plt.ion()
fig, ax = plt.subplots()
x_vals = np.arange(len(train_loader)*epochs)
loss_vals = []
for epoch in range(epochs):
# train_loss = trainaug(model, train_loader, criterion, optimizer, device, loss_vals, epochs, epoch)
# print(f"Epoch {epoch + 1}, Train Loss: {train_loss}")
val_loss, val_accuracy, wrong_files, true_labels, pred_labels = evaluate(model, validation_loader, criterion, device)
print(f"Epoch {epoch + 1}, Validation Loss: {val_loss}, Validation Accuracy: {val_accuracy:.2f}")
print("Misclassified Files")
for file_path in wrong_files:
print(file_path)
# Counter for the misclassified sentences
sentence_counts = Counter()
for file_path in wrong_files:
match = sentence_pattern.search(file_path)
if match:
sentence_number = int(match.group(1))
sentence_counts[sentence_number] += 1
print("Total wrong files:", len(wrong_files))
print()
for sentence_number, count in sentence_counts.most_common():
percent = count / total_sentence_counts[sentence_number] * 100
print(f"Sentence {sentence_number}: {count} ({percent:.2f}%)")
scheduler.step()
print(classification_report(true_labels, pred_labels, target_names=['non_dysarthria', 'dysarthria']))
torch.save(model.state_dict(), "dysarthria_classifier2.pth")
save_dir = "models/my_model_06"
model.save_pretrained(save_dir)
"""## Cross testing
"""
# dysarthria_validation_path = "/content/drive/MyDrive/RECORDINGS_ANALYSIS/SP_ANALYSIS/testing"
# non_dysarthria_validation_path = "/content/drive/MyDrive/RECORDINGS_ANALYSIS/CT_ANALYSIS/testing"
#dysarthria_validation_files = get_wav_files(dysarthria_validation_path)
# non_dysarthria_validation_files = get_wav_files(non_dysarthria_validation_path)
#validation_data = dysarthria_validation_files + non_dysarthria_validation_files
#validation_labels = [1] * len(dysarthria_validation_files) + [0] * len(non_dysarthria_validation_files)
epochs = 1
plt.ion()
fig, ax = plt.subplots()
x_vals = np.arange(len(train_loader)*epochs)
loss_vals = []
for epoch in range(epochs):
#train_loss = train(model, train_loader, criterion, optimizer, device, loss_vals, epochs, epoch)
#print(f"Epoch {epoch + 1}, Train Loss: {train_loss}")
val_loss, val_accuracy, wrong_files, true_labels, pred_labels = evaluate(model, validation_loader, criterion, device)
print(f"Epoch {epoch + 1}, Validation Loss: {val_loss}, Validation Accuracy: {val_accuracy:.2f}")
print("Misclassified Files")
for file_path in wrong_files:
print(file_path)
sentence_pattern = re.compile(r"_(\d+)\.wav$")
sentence_counts = Counter()
for file_path in wrong_files:
match = sentence_pattern.search(file_path)
if match:
sentence_number = int(match.group(1))
sentence_counts[sentence_number] += 1
total_wrong = len(wrong_files)
print("Total wrong files:", total_wrong)
print()
for sentence_number, count in sentence_counts.most_common():
percent = count / total_wrong * 100
print(f"Sentence {sentence_number}: {count} ({percent:.2f}%)")
scheduler.step()
print(classification_report(true_labels, pred_labels, target_names=['non_dysarthria', 'dysarthria']))
audio_file = "/content/drive/MyDrive/torgo_data/dysarthria_male/validation/M01_Session1_0005.wav"
predicted_label = predict(model, audio_file, train_dataset.processor, device)
print(f"Predicted label: {predicted_label}")
# Test on a specific audio file
##audio_file = "/content/drive/MyDrive/torgo_data/dysarthria_male/validation/M01_Session1_0005.wav"
##predicted_label = predict(model, audio_file, train_dataset.processor, device)
##print(f"Predicted label: {predicted_label}")
"""## DEBUGGING"""
dysarthria_path = "/content/drive/MyDrive/torgo_data/dysarthria_male/training"
non_dysarthria_path = "/content/drive/MyDrive/torgo_data/non_dysarthria_male/training"
dysarthria_files = [os.path.join(dysarthria_path, f) for f in os.listdir(dysarthria_path) if f.endswith('.wav')]
non_dysarthria_files = [os.path.join(non_dysarthria_path, f) for f in os.listdir(non_dysarthria_path) if f.endswith('.wav')]
data = dysarthria_files + non_dysarthria_files
labels = [1] * len(dysarthria_files) + [0] * len(non_dysarthria_files)
train_data, test_data, train_labels, test_labels = train_test_split(data, labels, test_size=0.2)
train_dataset = DysarthriaDataset(train_data, train_labels)
test_dataset = DysarthriaDataset(test_data, test_labels)
train_loader = DataLoader(train_dataset, batch_size=4, drop_last=True)
test_loader = DataLoader(test_dataset, batch_size=4, drop_last=True)
device = torch.device("cuda" if torch.cuda.is_available() else "cpu")
# model = Wav2Vec2ForCTC.from_pretrained("facebook/wav2vec2-base-960h").to(device)
# model.classifier = nn.Linear(model.config.hidden_size, 2).to(device)
model = Wav2Vec2ForSequenceClassification.from_pretrained("facebook/wav2vec2-base-960h", num_labels=2).to(device)
max_length = 100_000
processor = train_dataset.processor
model.eval()
audio_file = "/content/drive/MyDrive/torgo_data/dysarthria_male/validation/M01_Session1_0005.wav"
# predicted_label = predict(model, audio_file, train_dataset.processor, device)
# print(f"Predicted label: {predicted_label}")
wav_data, _ = sf.read(audio_file)
inputs = processor(wav_data, sampling_rate=16000, return_tensors="pt", padding=True)
input_values = inputs.input_values.squeeze(0) # Squeeze the batch dimension
if max_length - input_values.shape[-1] > 0:
input_values = torch.cat([input_values, torch.zeros((max_length - input_values.shape[-1],))], dim=-1)
else:
input_values = input_values[:max_length]
input_values = input_values.unsqueeze(0).to(device)
input_values.shape
with torch.no_grad():
outputs = model(**{"input_values": input_values})
logits = outputs.logits
input_values.shape, logits.shape
import torch.nn.functional as F
# Remove the batch dimension.
logits = logits.squeeze()
predicted_class_id = torch.argmax(logits, dim=-1)
predicted_class_id
"""Cross testing
##origial code
"""
import os
import soundfile as sf
import torch
import torch.nn as nn
import torch.nn.functional as F
from torch.utils.data import Dataset, DataLoader
from transformers import Wav2Vec2ForCTC, Wav2Vec2Processor, Wav2Vec2ForSequenceClassification
from sklearn.model_selection import train_test_split
# Custom Dataset class
class DysarthriaDataset(Dataset):
def __init__(self, data, labels, max_length=100000):
self.data = data
self.labels = labels
self.max_length = max_length
self.processor = Wav2Vec2Processor.from_pretrained("facebook/wav2vec2-base-960h")
def __len__(self):
return len(self.data)
def __getitem__(self, idx):
try:
wav_data, _ = sf.read(self.data[idx])
except:
print(f"Error opening file: {self.data[idx]}. Skipping...")
return self.__getitem__((idx + 1) % len(self.data))
inputs = self.processor(wav_data, sampling_rate=16000, return_tensors="pt", padding=True)
input_values = inputs.input_values.squeeze(0) # Squeeze the batch dimension
if self.max_length - input_values.shape[-1] > 0:
input_values = torch.cat([input_values, torch.zeros((self.max_length - input_values.shape[-1],))], dim=-1)
else:
input_values = input_values[:self.max_length]
# Remove unsqueezing the channel dimension
# input_values = input_values.unsqueeze(0)
# label = torch.zeros(32,dtype=torch.long)
# label[self.labels[idx]] = 1
### CHANGES: simply return the label as a single integer
return {"input_values": input_values}, self.labels[idx]
###
def train(model, dataloader, criterion, optimizer, device, ax, loss_vals, x_vals, fig,train_loader,epochs):
model.train()
running_loss = 0
for i, (inputs, labels) in enumerate(dataloader):
inputs = {key: value.squeeze().to(device) for key, value in inputs.items()}
labels = labels.to(device)
optimizer.zero_grad()
logits = model(**inputs).logits
loss = criterion(logits, labels)
loss.backward()
optimizer.step()
# append loss value to list
loss_vals.append(loss.item())
running_loss += loss.item()
if i:
# update plot
ax.clear()
ax.set_xlim([0, len(train_loader)*epochs])
ax.set_xlabel('Training Iterations')
ax.set_ylim([0, max(loss_vals) + 2])
ax.set_ylabel('Loss')
ax.plot(x_vals[:len(loss_vals)], loss_vals)
fig.canvas.draw()
plt.pause(0.001)
avg_loss = running_loss / len(dataloader)
print(avg_loss)
print("\n")
return avg_loss
def main():
dysarthria_path = "/content/drive/MyDrive/RECORDINGS_ANALYSIS/SP_ANALYSIS/training"
non_dysarthria_path = "/content/drive/MyDrive/RECORDINGS_ANALYSIS/CT_ANALYSIS/training"
dysarthria_files = get_wav_files(dysarthria_path)
non_dysarthria_files = get_wav_files(non_dysarthria_path)
data = dysarthria_files + non_dysarthria_files
labels = [1] * len(dysarthria_files) + [0] * len(non_dysarthria_files)
train_data, test_data, train_labels, test_labels = train_test_split(data, labels, test_size=0.2)
train_dataset = DysarthriaDataset(train_data, train_labels)
test_dataset = DysarthriaDataset(test_data, test_labels)
train_loader = DataLoader(train_dataset, batch_size=8, drop_last=True)
test_loader = DataLoader(test_dataset, batch_size=8, drop_last=True)
validation_loader = DataLoader(test_dataset, batch_size=8, drop_last=True)
device = torch.device("cuda" if torch.cuda.is_available() else "cpu")
# model = Wav2Vec2ForCTC.from_pretrained("facebook/wav2vec2-base-960h").to(device)
# model.classifier = nn.Linear(model.config.hidden_size, 2).to(device)
### NEW CODES
# It seems like the classifier layer is excluded from the model's forward method (i.e., model(**inputs)).
# That's why the number of labels in the output was 32 instead of 2 even when you had already changed the classifier.
# Instead, huggingface offers the option for loading the Wav2Vec model with an adjustable classifier head on top (by setting num_labels).
model = Wav2Vec2ForSequenceClassification.from_pretrained("facebook/wav2vec2-base-960h", num_labels=2).to(device)
###
#model_path = "/content/dysarthria_classifier3.pth"
#if os.path.exists(model_path):
#print(f"Loading saved model {model_path}")
#model.load_state_dict(torch.load(model_path))
criterion = nn.CrossEntropyLoss()
optimizer = torch.optim.Adam(model.parameters(), lr=3e-5)
dysarthria_validation_path = "/content/drive/MyDrive/RECORDINGS_ANALYSIS/SP_ANALYSIS/testing"
non_dysarthria_validation_path = "/content/drive/MyDrive/RECORDINGS_ANALYSIS/CT_ANALYSIS/testing"
dysarthria_validation_files = get_wav_files(dysarthria_validation_path)
non_dysarthria_validation_files = get_wav_files(non_dysarthria_validation_path)
validation_data = dysarthria_validation_files + non_dysarthria_validation_files
validation_labels = [1] * len(dysarthria_validation_files) + [0] * len(non_dysarthria_validation_files)
epochs = 10
fig, ax = plt.subplots()
x_vals = np.arange(len(train_loader)*epochs)
loss_vals = []
nume = 1
for epoch in range(epochs):
train_loss = train(model, train_loader, criterion, optimizer, device, ax, loss_vals, x_vals, fig, train_loader, epoch+1)
print(f"Epoch {epoch + 1}, Train Loss: {train_loss}")
val_loss, val_accuracy, wrong_files = evaluate(model, validation_loader, criterion, device)
print(f"Epoch {epoch + 1}, Validation Loss: {val_loss}, Validation Accuracy: {val_accuracy:.2f}")
print("Misclassified Files")
for file_path in wrong_files:
print(file_path)
sentence_pattern = re.compile(r"_(\d+)\.wav$")
sentence_counts = Counter()
for file_path in wrong_files:
match = sentence_pattern.search(file_path)
if match:
sentence_number = int(match.group(1))
sentence_counts[sentence_number] += 1
total_wrong = len(wrong_files)
print("Total wrong files:", total_wrong)
print()
for sentence_number, count in sentence_counts.most_common():
percent = count / total_wrong * 100
print(f"Sentence {sentence_number}: {count} ({percent:.2f}%)")
torch.save(model.state_dict(), "dysarthria_classifier4.pth")
print("Predicting...")
# Test on a specific audio file
##audio_file = "/content/drive/MyDrive/torgo_data/dysarthria_male/validation/M01_Session1_0005.wav"
##predicted_label = predict(model, audio_file, train_dataset.processor, device)
##print(f"Predicted label: {predicted_label}")
def predict(model, file_path, processor, device, max_length=100000): ### CHANGES: added max_length as an argument.
model.eval()
with torch.no_grad():
wav_data, _ = sf.read(file_path)
inputs = processor(wav_data, sampling_rate=16000, return_tensors="pt", padding=True)
# inputs = {key: value.squeeze().to(device) for key, value in inputs.items()}
### NEW CODES HERE
input_values = inputs.input_values.squeeze(0) # Squeeze the batch dimension
if max_length - input_values.shape[-1] > 0:
input_values = torch.cat([input_values, torch.zeros((max_length - input_values.shape[-1],))], dim=-1)
else:
input_values = input_values[:max_length]
input_values = input_values.unsqueeze(0).to(device)
inputs = {"input_values": input_values}
###
logits = model(**inputs).logits
# _, predicted = torch.max(logits, dim=0)
### NEW CODES HERE
# Remove the batch dimension.
logits = logits.squeeze()
predicted_class_id = torch.argmax(logits, dim=-1).item()
###
# return predicted.item()
return predicted_class_id
def evaluate(model, dataloader, criterion, device):
model.eval()
running_loss = 0
correct_predictions = 0
total_predictions = 0
wrong_files = []
with torch.no_grad():
for inputs, labels in dataloader:
inputs = {key: value.squeeze().to(device) for key, value in inputs.items()}
labels = labels.to(device)
logits = model(**inputs).logits
loss = criterion(logits, labels)
running_loss += loss.item()
_, predicted = torch.max(logits, 1)
correct_predictions += (predicted == labels).sum().item()
total_predictions += labels.size(0)
wrong_idx = (predicted != labels).nonzero().squeeze().cpu().numpy()
if wrong_idx.ndim > 0:
for idx in wrong_idx:
wrong_files.append(dataloader.dataset.data[idx])
elif wrong_idx.size > 0:
wrong_files.append(dataloader.dataset.data[wrong_idx])
avg_loss = running_loss / len(dataloader)
accuracy = correct_predictions / total_predictions
return avg_loss, accuracy, wrong_files
def get_wav_files(base_path):
wav_files = []
for subject_folder in os.listdir(base_path):
subject_path = os.path.join(base_path, subject_folder)
if os.path.isdir(subject_path):
for wav_file in os.listdir(subject_path):
if wav_file.endswith('.wav'):
wav_files.append(os.path.join(subject_path, wav_file))
return wav_files
if __name__ == "__main__":
main() |