mboss's picture
Initial commit
d945eeb
raw
history blame
46.2 kB
# coding=utf-8
# Copyright 2023 Meta AI and The HuggingFace Inc. team. All rights reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
"""PyTorch DINOv2 model."""
import collections.abc
import math
from dataclasses import dataclass
from typing import Dict, List, Optional, Set, Tuple, Union
import torch
import torch.nn.functional as F
import torch.utils.checkpoint
from torch import nn
from torch.nn import BCEWithLogitsLoss, CrossEntropyLoss, MSELoss
from transformers.activations import ACT2FN
from transformers.modeling_outputs import (
BackboneOutput,
BaseModelOutput,
BaseModelOutputWithPooling,
ImageClassifierOutput,
)
from transformers.modeling_utils import PreTrainedModel
from transformers.models.dinov2.configuration_dinov2 import Dinov2Config
from transformers.pytorch_utils import (
find_pruneable_heads_and_indices,
prune_linear_layer,
)
from transformers.utils import (
add_code_sample_docstrings,
add_start_docstrings,
add_start_docstrings_to_model_forward,
logging,
replace_return_docstrings,
)
from transformers.utils.backbone_utils import BackboneMixin
logger = logging.get_logger(__name__)
# General docstring
_CONFIG_FOR_DOC = "Dinov2Config"
# Base docstring
_CHECKPOINT_FOR_DOC = "facebook/dinov2-base"
_EXPECTED_OUTPUT_SHAPE = [1, 257, 768]
# Image classification docstring
_IMAGE_CLASS_CHECKPOINT = "facebook/dinov2-base"
DINOV2_PRETRAINED_MODEL_ARCHIVE_LIST = [
"facebook/dinov2-base",
# See all DINOv2 models at https://huggingface.co/models?filter=dinov2
]
class Dinov2Embeddings(nn.Module):
"""
Construct the CLS token, mask token, position and patch embeddings.
"""
def __init__(self, config: Dinov2Config) -> None:
super().__init__()
self.cls_token = nn.Parameter(torch.randn(1, 1, config.hidden_size))
# register as mask token as it's not used in optimization
# to avoid the use of find_unused_parameters_true
# self.mask_token = nn.Parameter(torch.zeros(1, config.hidden_size))
self.register_buffer("mask_token", torch.zeros(1, config.hidden_size))
self.patch_embeddings = Dinov2PatchEmbeddings(config)
num_patches = self.patch_embeddings.num_patches
self.position_embeddings = nn.Parameter(
torch.randn(1, num_patches + 1, config.hidden_size)
)
self.dropout = nn.Dropout(config.hidden_dropout_prob)
self.config = config
def interpolate_pos_encoding(
self, embeddings: torch.Tensor, height: int, width: int
) -> torch.Tensor:
"""
This method allows to interpolate the pre-trained position encodings, to be able to use the model on higher
resolution images.
Source:
https://github.com/facebookresearch/dino/blob/de9ee3df6cf39fac952ab558447af1fa1365362a/vision_transformer.py#L174
"""
num_patches = embeddings.shape[1] - 1
num_positions = self.position_embeddings.shape[1] - 1
if num_patches == num_positions and height == width:
return self.position_embeddings
class_pos_embed = self.position_embeddings[:, 0]
patch_pos_embed = self.position_embeddings[:, 1:]
dim = embeddings.shape[-1]
height = height // self.config.patch_size
width = width // self.config.patch_size
# we add a small number to avoid floating point error in the interpolation
# see discussion at https://github.com/facebookresearch/dino/issues/8
height, width = height + 0.1, width + 0.1
patch_pos_embed = patch_pos_embed.reshape(
1, int(math.sqrt(num_positions)), int(math.sqrt(num_positions)), dim
)
patch_pos_embed = patch_pos_embed.permute(0, 3, 1, 2)
patch_pos_embed = nn.functional.interpolate(
patch_pos_embed,
scale_factor=(
height / math.sqrt(num_positions),
width / math.sqrt(num_positions),
),
mode="bicubic",
align_corners=False,
)
if (
int(height) != patch_pos_embed.shape[-2]
or int(width) != patch_pos_embed.shape[-1]
):
raise ValueError(
"Width or height does not match with the interpolated position embeddings"
)
patch_pos_embed = patch_pos_embed.permute(0, 2, 3, 1).view(1, -1, dim)
return torch.cat((class_pos_embed.unsqueeze(0), patch_pos_embed), dim=1)
def forward(
self,
pixel_values: torch.Tensor,
bool_masked_pos: Optional[torch.Tensor] = None,
) -> torch.Tensor:
batch_size, _, height, width = pixel_values.shape
patch_embeddings = self.patch_embeddings(pixel_values)
embeddings = patch_embeddings
if bool_masked_pos is not None:
embeddings = torch.where(
bool_masked_pos.unsqueeze(-1),
self.mask_token.to(embeddings.dtype).unsqueeze(0),
embeddings,
)
# add the [CLS] token to the embedded patch tokens
cls_tokens = self.cls_token.expand(batch_size, -1, -1)
embeddings = torch.cat((cls_tokens, embeddings), dim=1)
# add positional encoding to each token
embeddings = embeddings + self.interpolate_pos_encoding(
embeddings, height, width
)
embeddings = self.dropout(embeddings)
return embeddings
class Dinov2PatchEmbeddings(nn.Module):
"""
This class turns `pixel_values` of shape `(batch_size, num_channels, height, width)` into the initial
`hidden_states` (patch embeddings) of shape `(batch_size, seq_length, hidden_size)` to be consumed by a
Transformer.
"""
def __init__(self, config):
super().__init__()
image_size, patch_size = config.image_size, config.patch_size
num_channels, hidden_size = config.num_channels, config.hidden_size
image_size = (
image_size
if isinstance(image_size, collections.abc.Iterable)
else (image_size, image_size)
)
patch_size = (
patch_size
if isinstance(patch_size, collections.abc.Iterable)
else (patch_size, patch_size)
)
num_patches = (image_size[1] // patch_size[1]) * (
image_size[0] // patch_size[0]
)
self.image_size = image_size
self.patch_size = patch_size
self.num_channels = num_channels
self.num_patches = num_patches
self.projection = nn.Conv2d(
num_channels, hidden_size, kernel_size=patch_size, stride=patch_size
)
def forward(self, pixel_values: torch.Tensor) -> torch.Tensor:
"""
num_channels = pixel_values.shape[1]
if num_channels != self.num_channels:
raise ValueError(
"Make sure that the channel dimension of the pixel values match with the one set in the configuration."
f" Expected {self.num_channels} but got {num_channels}."
)
"""
embeddings = self.projection(pixel_values).flatten(2).transpose(1, 2)
return embeddings
# Copied from transformers.models.vit.modeling_vit.ViTSelfAttention with ViT->Dinov2
class Dinov2SelfAttention(nn.Module):
def __init__(self, config: Dinov2Config) -> None:
super().__init__()
if config.hidden_size % config.num_attention_heads != 0 and not hasattr(
config, "embedding_size"
):
raise ValueError(
f"The hidden size {config.hidden_size,} is not a multiple of the number of attention "
f"heads {config.num_attention_heads}."
)
self.num_attention_heads = config.num_attention_heads
self.attention_head_size = int(config.hidden_size / config.num_attention_heads)
self.all_head_size = self.num_attention_heads * self.attention_head_size
self.attention_probs_dropout_prob = config.attention_probs_dropout_prob
self.query = nn.Linear(
config.hidden_size, self.all_head_size, bias=config.qkv_bias
)
self.key = nn.Linear(
config.hidden_size, self.all_head_size, bias=config.qkv_bias
)
self.value = nn.Linear(
config.hidden_size, self.all_head_size, bias=config.qkv_bias
)
self.dropout = nn.Dropout(config.attention_probs_dropout_prob)
def transpose_for_scores(self, x: torch.Tensor) -> torch.Tensor:
new_x_shape = x.size()[:-1] + (
self.num_attention_heads,
self.attention_head_size,
)
x = x.view(new_x_shape)
return x.permute(0, 2, 1, 3)
def forward(
self,
hidden_states,
head_mask: Optional[torch.Tensor] = None,
output_attentions: bool = False,
) -> Union[Tuple[torch.Tensor, torch.Tensor], Tuple[torch.Tensor]]:
mixed_query_layer = self.query(hidden_states)
if hasattr(F, "scaled_dot_product_attention"):
assert head_mask is None and not output_attentions
new_size = hidden_states.size()[:-1] + (
self.num_attention_heads,
self.attention_head_size,
)
key_layer = self.key(hidden_states).reshape(new_size).transpose(1, 2)
value_layer = self.value(hidden_states).reshape(new_size).transpose(1, 2)
query_layer = mixed_query_layer.reshape(new_size).transpose(1, 2)
context_layer = F.scaled_dot_product_attention(
query_layer,
key_layer,
value_layer,
dropout_p=self.attention_probs_dropout_prob,
is_causal=False,
)
context_layer = context_layer.transpose(1, 2).reshape(
*hidden_states.size()[:-1], -1
)
else:
key_layer = self.transpose_for_scores(self.key(hidden_states))
value_layer = self.transpose_for_scores(self.value(hidden_states))
query_layer = self.transpose_for_scores(mixed_query_layer)
# Take the dot product between "query" and "key" to get the raw attention scores.
attention_scores = torch.matmul(query_layer, key_layer.transpose(-1, -2))
attention_scores = attention_scores / math.sqrt(self.attention_head_size)
# Normalize the attention scores to probabilities.
attention_probs = nn.functional.softmax(attention_scores, dim=-1)
# This is actually dropping out entire tokens to attend to, which might
# seem a bit unusual, but is taken from the original Transformer paper.
attention_probs = self.dropout(attention_probs)
# Mask heads if we want to
if head_mask is not None:
attention_probs = attention_probs * head_mask
context_layer = torch.matmul(attention_probs, value_layer)
context_layer = context_layer.permute(0, 2, 1, 3).contiguous()
new_context_layer_shape = context_layer.size()[:-2] + (self.all_head_size,)
context_layer = context_layer.view(new_context_layer_shape)
outputs = (
(context_layer, attention_probs) if output_attentions else (context_layer,)
)
return outputs
# Copied from transformers.models.vit.modeling_vit.ViTSelfOutput with ViT->Dinov2
class Dinov2SelfOutput(nn.Module):
"""
The residual connection is defined in Dinov2Layer instead of here (as is the case with other models), due to the
layernorm applied before each block.
"""
def __init__(self, config: Dinov2Config) -> None:
super().__init__()
self.dense = nn.Linear(config.hidden_size, config.hidden_size)
self.dropout = nn.Dropout(config.hidden_dropout_prob)
def forward(
self, hidden_states: torch.Tensor, input_tensor: torch.Tensor
) -> torch.Tensor:
hidden_states = self.dense(hidden_states)
hidden_states = self.dropout(hidden_states)
return hidden_states
# Copied from transformers.models.vit.modeling_vit.ViTAttention with ViT->Dinov2
class Dinov2Attention(nn.Module):
def __init__(self, config: Dinov2Config) -> None:
super().__init__()
self.attention = Dinov2SelfAttention(config)
self.output = Dinov2SelfOutput(config)
self.pruned_heads = set()
def prune_heads(self, heads: Set[int]) -> None:
if len(heads) == 0:
return
heads, index = find_pruneable_heads_and_indices(
heads,
self.attention.num_attention_heads,
self.attention.attention_head_size,
self.pruned_heads,
)
# Prune linear layers
self.attention.query = prune_linear_layer(self.attention.query, index)
self.attention.key = prune_linear_layer(self.attention.key, index)
self.attention.value = prune_linear_layer(self.attention.value, index)
self.output.dense = prune_linear_layer(self.output.dense, index, dim=1)
# Update hyper params and store pruned heads
self.attention.num_attention_heads = self.attention.num_attention_heads - len(
heads
)
self.attention.all_head_size = (
self.attention.attention_head_size * self.attention.num_attention_heads
)
self.pruned_heads = self.pruned_heads.union(heads)
def forward(
self,
hidden_states: torch.Tensor,
head_mask: Optional[torch.Tensor] = None,
output_attentions: bool = False,
) -> Union[Tuple[torch.Tensor, torch.Tensor], Tuple[torch.Tensor]]:
self_outputs = self.attention(hidden_states, head_mask, output_attentions)
attention_output = self.output(self_outputs[0], hidden_states)
outputs = (attention_output,) + self_outputs[
1:
] # add attentions if we output them
return outputs
class Dinov2LayerScale(nn.Module):
def __init__(self, config) -> None:
super().__init__()
self.lambda1 = nn.Parameter(
config.layerscale_value * torch.ones(config.hidden_size)
)
def forward(self, hidden_state: torch.Tensor) -> torch.Tensor:
return hidden_state * self.lambda1
# Copied from transformers.models.beit.modeling_beit.drop_path
def drop_path(
input: torch.Tensor, drop_prob: float = 0.0, training: bool = False
) -> torch.Tensor:
"""
Drop paths (Stochastic Depth) per sample (when applied in main path of residual blocks).
Comment by Ross Wightman: This is the same as the DropConnect impl I created for EfficientNet, etc networks,
however, the original name is misleading as 'Drop Connect' is a different form of dropout in a separate paper...
See discussion: https://github.com/tensorflow/tpu/issues/494#issuecomment-532968956 ... I've opted for changing the
layer and argument names to 'drop path' rather than mix DropConnect as a layer name and use 'survival rate' as the
argument.
"""
if drop_prob == 0.0 or not training:
return input
keep_prob = 1 - drop_prob
shape = (input.shape[0],) + (1,) * (
input.ndim - 1
) # work with diff dim tensors, not just 2D ConvNets
random_tensor = keep_prob + torch.rand(
shape, dtype=input.dtype, device=input.device
)
random_tensor.floor_() # binarize
output = input.div(keep_prob) * random_tensor
return output
# Copied from transformers.models.beit.modeling_beit.BeitDropPath
class Dinov2DropPath(nn.Module):
"""Drop paths (Stochastic Depth) per sample (when applied in main path of residual blocks)."""
def __init__(self, drop_prob: Optional[float] = None) -> None:
super().__init__()
self.drop_prob = drop_prob
def forward(self, hidden_states: torch.Tensor) -> torch.Tensor:
return drop_path(hidden_states, self.drop_prob, self.training)
def extra_repr(self) -> str:
return "p={}".format(self.drop_prob)
class Dinov2MLP(nn.Module):
def __init__(self, config) -> None:
super().__init__()
in_features = out_features = config.hidden_size
hidden_features = int(config.hidden_size * config.mlp_ratio)
self.fc1 = nn.Linear(in_features, hidden_features, bias=True)
if isinstance(config.hidden_act, str):
self.activation = ACT2FN[config.hidden_act]
else:
self.activation = config.hidden_act
self.fc2 = nn.Linear(hidden_features, out_features, bias=True)
def forward(self, hidden_state: torch.Tensor) -> torch.Tensor:
hidden_state = self.fc1(hidden_state)
hidden_state = self.activation(hidden_state)
hidden_state = self.fc2(hidden_state)
return hidden_state
class Dinov2SwiGLUFFN(nn.Module):
def __init__(self, config) -> None:
super().__init__()
in_features = out_features = config.hidden_size
hidden_features = int(config.hidden_size * config.mlp_ratio)
hidden_features = (int(hidden_features * 2 / 3) + 7) // 8 * 8
self.weights_in = nn.Linear(in_features, 2 * hidden_features, bias=True)
self.weights_out = nn.Linear(hidden_features, out_features, bias=True)
def forward(self, hidden_state: torch.Tensor) -> torch.Tensor:
hidden_state = self.weights_in(hidden_state)
x1, x2 = hidden_state.chunk(2, dim=-1)
hidden = nn.functional.silu(x1) * x2
return self.weights_out(hidden)
class Dinov2Layer(nn.Module):
"""This corresponds to the Block class in the original implementation."""
def __init__(self, config: Dinov2Config) -> None:
super().__init__()
self.norm1 = nn.LayerNorm(config.hidden_size, eps=config.layer_norm_eps)
self.norm1_modulation = None
self.attention = Dinov2Attention(config)
self.layer_scale1 = Dinov2LayerScale(config)
self.drop_path1 = (
Dinov2DropPath(config.drop_path_rate)
if config.drop_path_rate > 0.0
else nn.Identity()
)
self.norm2 = nn.LayerNorm(config.hidden_size, eps=config.layer_norm_eps)
self.norm2_modulation = None
if config.use_swiglu_ffn:
self.mlp = Dinov2SwiGLUFFN(config)
else:
self.mlp = Dinov2MLP(config)
self.layer_scale2 = Dinov2LayerScale(config)
self.drop_path2 = (
Dinov2DropPath(config.drop_path_rate)
if config.drop_path_rate > 0.0
else nn.Identity()
)
def forward(
self,
hidden_states: torch.Tensor,
head_mask: Optional[torch.Tensor] = None,
modulation_cond: Optional[torch.Tensor] = None,
output_attentions: bool = False,
) -> Union[Tuple[torch.Tensor, torch.Tensor], Tuple[torch.Tensor]]:
hidden_states_norm = self.norm1(hidden_states)
if self.norm1_modulation is not None:
assert modulation_cond is not None
hidden_states_norm = self.norm1_modulation(
hidden_states_norm, modulation_cond
)
self_attention_outputs = self.attention(
hidden_states_norm, # in Dinov2, layernorm is applied before self-attention
head_mask,
output_attentions=output_attentions,
)
attention_output = self_attention_outputs[0]
attention_output = self.layer_scale1(attention_output)
outputs = self_attention_outputs[
1:
] # add self attentions if we output attention weights
# first residual connection
hidden_states = attention_output + hidden_states
# in Dinov2, layernorm is also applied after self-attention
layer_output = self.norm2(hidden_states)
if self.norm2_modulation is not None:
assert modulation_cond is not None
layer_output = self.norm2_modulation(layer_output, modulation_cond)
layer_output = self.mlp(layer_output)
layer_output = self.layer_scale2(layer_output)
# second residual connection
layer_output = layer_output + hidden_states
outputs = (layer_output,) + outputs
return outputs
def register_ada_norm_modulation(self, norm1_mod: nn.Module, norm2_mod: nn.Module):
self.norm1_modulation = norm1_mod
self.norm2_modulation = norm2_mod
# Copied from transformers.models.vit.modeling_vit.ViTEncoder with ViT->Dinov2
class Dinov2Encoder(nn.Module):
def __init__(self, config: Dinov2Config) -> None:
super().__init__()
self.config = config
self.layer = nn.ModuleList(
[Dinov2Layer(config) for _ in range(config.num_hidden_layers)]
)
self.gradient_checkpointing = False
def forward(
self,
hidden_states: torch.Tensor,
head_mask: Optional[torch.Tensor] = None,
modulation_cond: Optional[torch.Tensor] = None,
output_attentions: bool = False,
output_hidden_states: bool = False,
return_dict: bool = True,
) -> Union[tuple, BaseModelOutput]:
all_hidden_states = () if output_hidden_states else None
all_self_attentions = () if output_attentions else None
for i, layer_module in enumerate(self.layer):
if output_hidden_states:
all_hidden_states = all_hidden_states + (hidden_states,)
layer_head_mask = head_mask[i] if head_mask is not None else None
if self.gradient_checkpointing and self.training:
def create_custom_forward(module):
def custom_forward(*inputs):
return module(*inputs, output_attentions)
return custom_forward
layer_outputs = torch.utils.checkpoint.checkpoint(
create_custom_forward(layer_module),
hidden_states,
layer_head_mask,
modulation_cond,
use_reentrant=False,
)
else:
layer_outputs = layer_module(
hidden_states, layer_head_mask, modulation_cond, output_attentions
)
hidden_states = layer_outputs[0]
if output_attentions:
all_self_attentions = all_self_attentions + (layer_outputs[1],)
if output_hidden_states:
all_hidden_states = all_hidden_states + (hidden_states,)
if not return_dict:
return tuple(
v
for v in [hidden_states, all_hidden_states, all_self_attentions]
if v is not None
)
return BaseModelOutput(
last_hidden_state=hidden_states,
hidden_states=all_hidden_states,
attentions=all_self_attentions,
)
class Dinov2PreTrainedModel(PreTrainedModel):
"""
An abstract class to handle weights initialization and a simple interface for downloading and loading pretrained
models.
"""
config_class = Dinov2Config
base_model_prefix = "dinov2"
main_input_name = "pixel_values"
supports_gradient_checkpointing = True
def _init_weights(self, module: Union[nn.Linear, nn.Conv2d, nn.LayerNorm]) -> None:
"""Initialize the weights"""
if isinstance(module, (nn.Linear, nn.Conv2d)):
# Upcast the input in `fp32` and cast it back to desired `dtype` to avoid
# `trunc_normal_cpu` not implemented in `half` issues
module.weight.data = nn.init.trunc_normal_(
module.weight.data.to(torch.float32),
mean=0.0,
std=self.config.initializer_range,
).to(module.weight.dtype)
if module.bias is not None:
module.bias.data.zero_()
elif isinstance(module, nn.LayerNorm):
module.bias.data.zero_()
module.weight.data.fill_(1.0)
elif isinstance(module, Dinov2Embeddings):
module.position_embeddings.data = nn.init.trunc_normal_(
module.position_embeddings.data.to(torch.float32),
mean=0.0,
std=self.config.initializer_range,
).to(module.position_embeddings.dtype)
module.cls_token.data = nn.init.trunc_normal_(
module.cls_token.data.to(torch.float32),
mean=0.0,
std=self.config.initializer_range,
).to(module.cls_token.dtype)
def _set_gradient_checkpointing(
self, module: Dinov2Encoder, value: bool = False
) -> None:
if isinstance(module, Dinov2Encoder):
module.gradient_checkpointing = value
DINOV2_START_DOCSTRING = r"""
This model is a PyTorch [torch.nn.Module](https://pytorch.org/docs/stable/nn.html#torch.nn.Module) subclass. Use it
as a regular PyTorch Module and refer to the PyTorch documentation for all matter related to general usage and
behavior.
Parameters:
config ([`Dinov2Config`]): Model configuration class with all the parameters of the model.
Initializing with a config file does not load the weights associated with the model, only the
configuration. Check out the [`~PreTrainedModel.from_pretrained`] method to load the model weights.
"""
DINOV2_BASE_INPUTS_DOCSTRING = r"""
Args:
pixel_values (`torch.FloatTensor` of shape `(batch_size, num_channels, height, width)`):
Pixel values. Pixel values can be obtained using [`AutoImageProcessor`]. See
[`BitImageProcessor.preprocess`] for details.
bool_masked_pos (`torch.BoolTensor` of shape `(batch_size, sequence_length)`):
Boolean masked positions. Indicates which patches are masked (1) and which aren't (0). Only relevant for
pre-training.
head_mask (`torch.FloatTensor` of shape `(num_heads,)` or `(num_layers, num_heads)`, *optional*):
Mask to nullify selected heads of the self-attention modules. Mask values selected in `[0, 1]`:
- 1 indicates the head is **not masked**,
- 0 indicates the head is **masked**.
output_attentions (`bool`, *optional*):
Whether or not to return the attentions tensors of all attention layers. See `attentions` under returned
tensors for more detail.
output_hidden_states (`bool`, *optional*):
Whether or not to return the hidden states of all layers. See `hidden_states` under returned tensors for
more detail.
return_dict (`bool`, *optional*):
Whether or not to return a [`~utils.ModelOutput`] instead of a plain tuple.
"""
DINOV2_INPUTS_DOCSTRING = r"""
Args:
pixel_values (`torch.FloatTensor` of shape `(batch_size, num_channels, height, width)`):
Pixel values. Pixel values can be obtained using [`AutoImageProcessor`]. See
[`BitImageProcessor.preprocess`] for details.
head_mask (`torch.FloatTensor` of shape `(num_heads,)` or `(num_layers, num_heads)`, *optional*):
Mask to nullify selected heads of the self-attention modules. Mask values selected in `[0, 1]`:
- 1 indicates the head is **not masked**,
- 0 indicates the head is **masked**.
output_attentions (`bool`, *optional*):
Whether or not to return the attentions tensors of all attention layers. See `attentions` under returned
tensors for more detail.
output_hidden_states (`bool`, *optional*):
Whether or not to return the hidden states of all layers. See `hidden_states` under returned tensors for
more detail.
return_dict (`bool`, *optional*):
Whether or not to return a [`~utils.ModelOutput`] instead of a plain tuple.
"""
@dataclass
class CustomBaseModelOutputWithPooling(BaseModelOutputWithPooling):
patch_embeddings: Optional[torch.FloatTensor] = None
@add_start_docstrings(
"The bare DINOv2 Model transformer outputting raw hidden-states without any specific head on top.",
DINOV2_START_DOCSTRING,
)
class Dinov2Model(Dinov2PreTrainedModel):
def __init__(self, config: Dinov2Config):
super().__init__(config)
self.config = config
self.embeddings = Dinov2Embeddings(config)
self.encoder = Dinov2Encoder(config)
self.layernorm = nn.LayerNorm(config.hidden_size, eps=config.layer_norm_eps)
# Initialize weights and apply final processing
self.post_init()
def get_input_embeddings(self) -> Dinov2PatchEmbeddings:
return self.embeddings.patch_embeddings
def expand_input_channels(self, extra_input_channels: int) -> None:
if extra_input_channels == 0:
return
conv_old = self.embeddings.patch_embeddings.projection
conv_new = nn.Conv2d(
self.config.num_channels + extra_input_channels,
self.config.hidden_size,
kernel_size=self.config.patch_size,
stride=self.config.patch_size,
).to(self.device)
with torch.no_grad():
conv_new.weight[:, :3] = conv_old.weight
conv_new.bias = conv_old.bias
self.embeddings.patch_embeddings.projection = conv_new
del conv_old
def _prune_heads(self, heads_to_prune: Dict[int, List[int]]) -> None:
"""
Prunes heads of the model. heads_to_prune: dict of {layer_num: list of heads to prune in this layer} See base
class PreTrainedModel
"""
for layer, heads in heads_to_prune.items():
self.encoder.layer[layer].attention.prune_heads(heads)
@add_start_docstrings_to_model_forward(DINOV2_BASE_INPUTS_DOCSTRING)
@add_code_sample_docstrings(
checkpoint=_CHECKPOINT_FOR_DOC,
output_type=BaseModelOutputWithPooling,
config_class=_CONFIG_FOR_DOC,
modality="vision",
expected_output=_EXPECTED_OUTPUT_SHAPE,
)
def forward(
self,
pixel_values: Optional[torch.Tensor] = None,
bool_masked_pos: Optional[torch.Tensor] = None,
head_mask: Optional[torch.Tensor] = None,
modulation_cond: Optional[torch.Tensor] = None,
output_attentions: Optional[bool] = None,
output_hidden_states: Optional[bool] = None,
return_dict: Optional[bool] = None,
) -> Union[Tuple, BaseModelOutputWithPooling]:
output_attentions = (
output_attentions
if output_attentions is not None
else self.config.output_attentions
)
output_hidden_states = (
output_hidden_states
if output_hidden_states is not None
else self.config.output_hidden_states
)
return_dict = (
return_dict if return_dict is not None else self.config.use_return_dict
)
if pixel_values is None:
raise ValueError("You have to specify pixel_values")
# Prepare head mask if needed
# 1.0 in head_mask indicate we keep the head
# attention_probs has shape bsz x n_heads x N x N
# input head_mask has shape [num_heads] or [num_hidden_layers x num_heads]
# and head_mask is converted to shape [num_hidden_layers x batch x num_heads x seq_length x seq_length]
head_mask = self.get_head_mask(head_mask, self.config.num_hidden_layers)
embedding_output = self.embeddings(
pixel_values, bool_masked_pos=bool_masked_pos
)
encoder_outputs = self.encoder(
embedding_output,
head_mask=head_mask,
modulation_cond=modulation_cond,
output_attentions=output_attentions,
output_hidden_states=output_hidden_states,
return_dict=return_dict,
)
sequence_output = encoder_outputs[0]
sequence_output = self.layernorm(sequence_output)
pooled_output = sequence_output[:, 0, :]
if not return_dict:
head_outputs = (sequence_output, pooled_output)
return head_outputs + encoder_outputs[1:]
return CustomBaseModelOutputWithPooling(
last_hidden_state=sequence_output,
pooler_output=pooled_output,
hidden_states=encoder_outputs.hidden_states,
attentions=encoder_outputs.attentions,
patch_embeddings=embedding_output,
)
def set_gradient_checkpointing(self, value: bool = False) -> None:
self._set_gradient_checkpointing(self.encoder, value)
@add_start_docstrings(
"""
Dinov2 Model transformer with an image classification head on top (a linear layer on top of the final hidden state
of the [CLS] token) e.g. for ImageNet.
""",
DINOV2_START_DOCSTRING,
)
class Dinov2ForImageClassification(Dinov2PreTrainedModel):
def __init__(self, config: Dinov2Config) -> None:
super().__init__(config)
self.num_labels = config.num_labels
self.dinov2 = Dinov2Model(config)
# Classifier head
self.classifier = (
nn.Linear(config.hidden_size * 2, config.num_labels)
if config.num_labels > 0
else nn.Identity()
)
# Initialize weights and apply final processing
self.post_init()
@add_start_docstrings_to_model_forward(DINOV2_INPUTS_DOCSTRING)
@add_code_sample_docstrings(
checkpoint=_IMAGE_CLASS_CHECKPOINT,
output_type=ImageClassifierOutput,
config_class=_CONFIG_FOR_DOC,
)
def forward(
self,
pixel_values: Optional[torch.Tensor] = None,
head_mask: Optional[torch.Tensor] = None,
labels: Optional[torch.Tensor] = None,
output_attentions: Optional[bool] = None,
output_hidden_states: Optional[bool] = None,
return_dict: Optional[bool] = None,
) -> Union[tuple, ImageClassifierOutput]:
r"""
labels (`torch.LongTensor` of shape `(batch_size,)`, *optional*):
Labels for computing the image classification/regression loss. Indices should be in `[0, ...,
config.num_labels - 1]`. If `config.num_labels == 1` a regression loss is computed (Mean-Square loss), If
`config.num_labels > 1` a classification loss is computed (Cross-Entropy).
"""
return_dict = (
return_dict if return_dict is not None else self.config.use_return_dict
)
outputs = self.dinov2(
pixel_values,
head_mask=head_mask,
output_attentions=output_attentions,
output_hidden_states=output_hidden_states,
return_dict=return_dict,
)
sequence_output = outputs[0] # batch_size, sequence_length, hidden_size
cls_token = sequence_output[:, 0]
patch_tokens = sequence_output[:, 1:]
linear_input = torch.cat([cls_token, patch_tokens.mean(dim=1)], dim=1)
logits = self.classifier(linear_input)
loss = None
if labels is not None:
# move labels to correct device to enable model parallelism
labels = labels.to(logits.device)
if self.config.problem_type is None:
if self.num_labels == 1:
self.config.problem_type = "regression"
elif self.num_labels > 1 and (
labels.dtype == torch.long or labels.dtype == torch.int
):
self.config.problem_type = "single_label_classification"
else:
self.config.problem_type = "multi_label_classification"
if self.config.problem_type == "regression":
loss_fct = MSELoss()
if self.num_labels == 1:
loss = loss_fct(logits.squeeze(), labels.squeeze())
else:
loss = loss_fct(logits, labels)
elif self.config.problem_type == "single_label_classification":
loss_fct = CrossEntropyLoss()
loss = loss_fct(logits.view(-1, self.num_labels), labels.view(-1))
elif self.config.problem_type == "multi_label_classification":
loss_fct = BCEWithLogitsLoss()
loss = loss_fct(logits, labels)
if not return_dict:
output = (logits,) + outputs[2:]
return ((loss,) + output) if loss is not None else output
return ImageClassifierOutput(
loss=loss,
logits=logits,
hidden_states=outputs.hidden_states,
attentions=outputs.attentions,
)
@add_start_docstrings(
"""
Dinov2 backbone, to be used with frameworks like DETR and MaskFormer.
""",
DINOV2_START_DOCSTRING,
)
class Dinov2Backbone(Dinov2PreTrainedModel, BackboneMixin):
def __init__(self, config):
super().__init__(config)
super()._init_backbone(config)
self.num_features = [
config.hidden_size for _ in range(config.num_hidden_layers + 1)
]
self.embeddings = Dinov2Embeddings(config)
self.encoder = Dinov2Encoder(config)
self.layernorm = nn.LayerNorm(config.hidden_size, eps=config.layer_norm_eps)
# Initialize weights and apply final processing
self.post_init()
def get_input_embeddings(self) -> Dinov2PatchEmbeddings:
return self.embeddings.patch_embeddings
@add_start_docstrings_to_model_forward(DINOV2_INPUTS_DOCSTRING)
@replace_return_docstrings(output_type=BackboneOutput, config_class=_CONFIG_FOR_DOC)
def forward(
self,
pixel_values: torch.Tensor,
output_hidden_states: Optional[bool] = None,
output_attentions: Optional[bool] = None,
return_dict: Optional[bool] = None,
) -> BackboneOutput:
"""
Returns:
Examples:
```python
>>> from transformers import AutoImageProcessor, AutoBackbone
>>> import torch
>>> from PIL import Image
>>> import requests
>>> url = "http://images.cocodataset.org/val2017/000000039769.jpg"
>>> image = Image.open(requests.get(url, stream=True).raw)
>>> processor = AutoImageProcessor.from_pretrained("facebook/dinov2-base")
>>> model = AutoBackbone.from_pretrained(
... "facebook/dinov2-base", out_features=["stage2", "stage5", "stage8", "stage11"]
... )
>>> inputs = processor(image, return_tensors="pt")
>>> outputs = model(**inputs)
>>> feature_maps = outputs.feature_maps
>>> list(feature_maps[-1].shape)
[1, 768, 16, 16]
```"""
return_dict = (
return_dict if return_dict is not None else self.config.use_return_dict
)
output_hidden_states = (
output_hidden_states
if output_hidden_states is not None
else self.config.output_hidden_states
)
output_attentions = (
output_attentions
if output_attentions is not None
else self.config.output_attentions
)
embedding_output = self.embeddings(pixel_values)
outputs = self.encoder(
embedding_output,
output_hidden_states=True,
output_attentions=output_attentions,
return_dict=return_dict,
)
hidden_states = outputs.hidden_states if return_dict else outputs[1]
feature_maps = ()
for stage, hidden_state in zip(self.stage_names, hidden_states):
if stage in self.out_features:
if self.config.apply_layernorm:
hidden_state = self.layernorm(hidden_state)
if self.config.reshape_hidden_states:
batch_size, _, height, width = pixel_values.shape
patch_size = self.config.patch_size
hidden_state = hidden_state[:, 1:, :].reshape(
batch_size, width // patch_size, height // patch_size, -1
)
hidden_state = hidden_state.permute(0, 3, 1, 2).contiguous()
feature_maps += (hidden_state,)
if not return_dict:
if output_hidden_states:
output = (feature_maps,) + outputs[1:]
else:
output = (feature_maps,) + outputs[2:]
return output
return BackboneOutput(
feature_maps=feature_maps,
hidden_states=outputs.hidden_states if output_hidden_states else None,
attentions=outputs.attentions if output_attentions else None,
)
class CustomPatchEmbeddings(nn.Module):
"""
This class turns `pixel_values` of shape `(batch_size, num_channels, height, width)` into the initial
`hidden_states` (patch embeddings) of shape `(batch_size, seq_length, hidden_size)` to be consumed by a
Transformer.
"""
def __init__(
self, image_size: int, patch_size: int, num_channels: int, hidden_size: int
):
super().__init__()
image_size = (
image_size
if isinstance(image_size, collections.abc.Iterable)
else (image_size, image_size)
)
patch_size = (
patch_size
if isinstance(patch_size, collections.abc.Iterable)
else (patch_size, patch_size)
)
num_patches = (image_size[1] // patch_size[1]) * (
image_size[0] // patch_size[0]
)
self.image_size = image_size
self.patch_size = patch_size
self.num_channels = num_channels
self.num_patches = num_patches
self.projection = nn.Conv2d(
num_channels, hidden_size, kernel_size=patch_size, stride=patch_size
)
def forward(self, pixel_values: torch.Tensor) -> torch.Tensor:
num_channels = pixel_values.shape[1]
if num_channels != self.num_channels:
raise ValueError(
"Make sure that the channel dimension of the pixel values match with the one set in the configuration."
f" Expected {self.num_channels} but got {num_channels}."
)
embeddings = self.projection(pixel_values).flatten(2).transpose(1, 2)
return embeddings
class CustomEmbeddings(nn.Module):
"""
Construct the CLS token, mask token, position and patch embeddings.
"""
def __init__(
self, image_size: int, patch_size: int, num_channels: int, hidden_size: int
) -> None:
super().__init__()
self.image_size = image_size
self.patch_size = patch_size
self.num_channels = num_channels
self.hidden_size = hidden_size
self.cls_token = nn.Parameter(torch.randn(1, 1, self.hidden_size))
self.patch_embeddings = CustomPatchEmbeddings(
image_size, patch_size, num_channels, hidden_size
)
num_patches = self.patch_embeddings.num_patches
self.position_embeddings = nn.Parameter(
torch.randn(1, num_patches + 1, self.hidden_size)
)
def interpolate_pos_encoding(
self, embeddings: torch.Tensor, height: int, width: int
) -> torch.Tensor:
"""
This method allows to interpolate the pre-trained position encodings, to be able to use the model on higher
resolution images.
Source:
https://github.com/facebookresearch/dino/blob/de9ee3df6cf39fac952ab558447af1fa1365362a/vision_transformer.py#L174
"""
num_patches = embeddings.shape[1] - 1
num_positions = self.position_embeddings.shape[1] - 1
if num_patches == num_positions and height == width:
return self.position_embeddings
class_pos_embed = self.position_embeddings[:, 0]
patch_pos_embed = self.position_embeddings[:, 1:]
dim = embeddings.shape[-1]
height = height // self.patch_size
width = width // self.patch_size
# we add a small number to avoid floating point error in the interpolation
# see discussion at https://github.com/facebookresearch/dino/issues/8
height, width = height + 0.1, width + 0.1
patch_pos_embed = patch_pos_embed.reshape(
1, int(math.sqrt(num_positions)), int(math.sqrt(num_positions)), dim
)
patch_pos_embed = patch_pos_embed.permute(0, 3, 1, 2)
patch_pos_embed = nn.functional.interpolate(
patch_pos_embed,
scale_factor=(
height / math.sqrt(num_positions),
width / math.sqrt(num_positions),
),
mode="bicubic",
align_corners=False,
)
if (
int(height) != patch_pos_embed.shape[-2]
or int(width) != patch_pos_embed.shape[-1]
):
raise ValueError(
"Width or height does not match with the interpolated position embeddings"
)
patch_pos_embed = patch_pos_embed.permute(0, 2, 3, 1).view(1, -1, dim)
return torch.cat((class_pos_embed.unsqueeze(0), patch_pos_embed), dim=1)
def forward(
self,
pixel_values: torch.Tensor,
) -> torch.Tensor:
batch_size, _, height, width = pixel_values.shape
patch_embeddings = self.patch_embeddings(pixel_values)
embeddings = patch_embeddings
# add the [CLS] token to the embedded patch tokens
cls_tokens = self.cls_token.expand(batch_size, -1, -1)
embeddings = torch.cat((cls_tokens, embeddings), dim=1)
# add positional encoding to each token
embeddings = embeddings + self.interpolate_pos_encoding(
embeddings, height, width
)
return embeddings