Spaces:
Runtime error
Runtime error
import gradio as gr | |
from pythainlp import word_tokenize | |
import numpy as np | |
import tensorflow as tf | |
from tensorflow import keras | |
from tensorflow.keras.preprocessing.text import Tokenizer | |
from tensorflow.keras.preprocessing.sequence import pad_sequences | |
from tensorflow.keras.models import Model | |
from tensorflow.keras.layers import Input, Embedding, Conv1D, MaxPooling1D, Dense, Flatten, Concatenate, Dropout, Dot, Activation, Reshape, Permute, Multiply | |
from keras import backend as K | |
import pandas as pd | |
from transformers import TFAutoModel, AutoTokenizer | |
from sklearn.model_selection import train_test_split | |
import json | |
# load the tokenizer and transformer model | |
tokenizer = AutoTokenizer.from_pretrained("xlm-roberta-base",max_length=60) #xlm-roberta-base bert-base-multilingual-cased | |
transformer_model = TFAutoModel.from_pretrained("xlm-roberta-base") #philschmid/tiny-bert-sst2-distilled | |
max_seq_length = 32 | |
env_decode ={} | |
with open('tf_labels6.json', encoding='utf-8') as fh: | |
env_decode = json.load(fh) | |
env_decode = {int(x):y for x,y in env_decode.items()} | |
hour_decode={} | |
with open('tf_labels7.json', encoding='utf-8') as fh: | |
hour_decode = json.load(fh) | |
hour_decode = {int(x):y for x,y in hour_decode.items()} | |
minute_decode={} | |
with open('tf_labels8.json', encoding='utf-8') as fh: | |
minute_decode = json.load(fh) | |
minute_decode = {int(x):y for x,y in minute_decode.items()} | |
def create_model(): | |
# defined architecture for load_model | |
inputs = tf.keras.layers.Input(shape=(max_seq_length,), dtype=tf.int32) | |
embedding_layer = transformer_model(inputs)[0] | |
flatten_layer = Flatten()(embedding_layer) | |
x1 = Dense(64, activation='relu')(flatten_layer) | |
x1 = Dense(32, activation='relu')(x1) | |
x1 = Dense(16, activation='relu')(x1) | |
x2 = Dense(64, activation='relu')(flatten_layer) | |
x2 = Dense(32, activation='relu')(x2) | |
x2 = Dense(16, activation='relu')(x2) | |
x3 = Dense(64, activation='relu')(flatten_layer) | |
x3 = Dense(32, activation='relu')(x3) | |
x3 = Dense(16, activation='relu')(x3) | |
x4 = Dense(64, activation='relu')(flatten_layer) | |
x4 = Dense(32, activation='relu')(x4) | |
x4 = Dense(16, activation='relu')(x4) | |
x5 = Dense(64, activation='relu')(flatten_layer) | |
x5 = Dense(32, activation='relu')(x5) | |
x5 = Dense(16, activation='relu')(x5) | |
x6 = Dense(512, activation='relu')(flatten_layer) | |
x6 = Dense(256, activation='relu')(x6) | |
x6 = Dense(128, activation='relu')(x6) | |
x7 = Dense(128, activation='relu')(flatten_layer) | |
x7 = Dense(64, activation='relu')(x7) | |
x7 = Dense(32, activation='relu')(x7) | |
x8 = Dense(256, activation='relu')(flatten_layer) | |
x8 = Dense(128, activation='relu')(x8) | |
x8 = Dense(64, activation='relu')(x8) | |
output_layer1 = Dense(1, activation='sigmoid', name='output1')(x1) | |
output_layer2 = Dense(1, activation='sigmoid', name='output2')(x2) | |
output_layer3 = Dense(1, activation='sigmoid', name='output3')(x3) | |
output_layer4 = Dense(1, activation='sigmoid', name='output4')(x4) | |
output_layer5 = Dense(1, activation='sigmoid', name='output5')(x5) | |
output_layer6 = Dense(119, activation='softmax', name='output6')(x6) | |
output_layer7 = Dense(25, activation='softmax', name='output7')(x7) | |
output_layer8 = Dense(61, activation='softmax', name='output8')(x8) | |
# train only last layer of transformer | |
for i,layer in enumerate(transformer_model.roberta.encoder.layer[:-1]): | |
transformer_model.roberta.encoder.layer[i].trainable = False | |
# define the model inputs outputs | |
model = Model(inputs=inputs , outputs=[output_layer1, output_layer2, output_layer3,output_layer4,output_layer5,output_layer6,output_layer7,output_layer8]) | |
opt = keras.optimizers.Adam(learning_rate=3e-5) | |
model.compile(loss=['binary_crossentropy','binary_crossentropy','binary_crossentropy','binary_crossentropy','binary_crossentropy', 'categorical_crossentropy', 'categorical_crossentropy', 'categorical_crossentropy'], optimizer=opt, | |
metrics=[ | |
tf.keras.metrics.BinaryAccuracy(), | |
'categorical_accuracy' | |
]) | |
#load weight | |
model.load_weights("t1_m1.h5") | |
return model | |
model =create_model() | |
room_dict = { | |
'ห้องนั่งเล่น': 'Living Room','ห้องครัว':'Kitchen','ห้องนอน':'Bedroom','ห้องน้ำ':'Bathroom','ห้องรับประทานอาหาร': 'Dining Room','ห้องสมุด': 'Library','ห้องพักผู้มาเยือน': 'Guest Room','ห้องเล่นเกม':'Game Room','ห้องซักผ้า':'Laundry Room','ระเบียง':'balcony','ไม่มีห้อง':'no room' | |
} | |
scene_dict = { | |
'ซีน เอ':'scene A','ซีน บี':'scene B','ซีน ซี':'scene C','ซีน ดี':'scene D','ซีน อี':'scene E','ซีน เอฟ':'scene F','ซีน จี':'scene G','ซีน เอช':'scene H','ไม่มีซีน':'no scene' | |
} | |
def predict(text): | |
test_texts = [text] | |
spilt_thai_text = [word_tokenize(x) for x in test_texts] | |
new_input_ids = tokenizer(spilt_thai_text, padding=True, truncation=True, return_tensors="tf",is_split_into_words=True)["input_ids"] | |
test_padded_sequences = pad_sequences(new_input_ids, maxlen=max_seq_length,padding='post',truncating='post',value=1) #post pre | |
predicted_labels = model.predict(test_padded_sequences) | |
# default answer | |
tmp = { | |
'command' : "not recognized", | |
'room' : None, | |
'device' : None, | |
"hour" : None, | |
"minute": None | |
} | |
for i in range(len(test_texts)): | |
valid = 1 if predicted_labels[0][i] > 0.5 else 0 | |
is_scene = 1 if predicted_labels[1][i] > 0.5 else 0 | |
has_num = 1 if predicted_labels[2][i] > 0.5 else 0 | |
turn = 1 if predicted_labels[3][i] > 0.5 else 0 | |
env_id = np.argmax(predicted_labels[5][i]) | |
env_label = env_decode[env_id] | |
hour_id = np.argmax(predicted_labels[6][i]) | |
hour_label = hour_decode[hour_id] | |
minute_id = np.argmax(predicted_labels[7][i]) | |
minute_label = minute_decode[minute_id] | |
if valid: | |
tmp['device'] = 'ไฟ' | |
tmp['command'] = 'turn on' if turn else 'turn off' | |
if not is_scene: | |
tmp['room'] = room_dict[env_label] if env_label in room_dict else room_dict['ไม่มีห้อง'] | |
else: | |
tmp['room'] = scene_dict[env_label] if env_label in scene_dict else room_dict['ไม่มีซีน'] | |
if has_num: | |
tmp['hour'] = hour_label | |
tmp['minute'] = minute_label | |
return tmp | |
iface = gr.Interface( | |
fn=predict, | |
inputs='text', | |
outputs='json', | |
examples=[["เปิดไฟห้องนอนหน่อย"],["เปิดไฟซีนเอ"],["ปิดไฟห้องรับประทานอาหารเวลา4ทุ่มสามสิบเจ็ดนาที"],['ปิดไฟห้องน้ำเวลาบ่ายโมงห้าสิบนาที'],["โย่ และนี่คือเสียงจากเด็กวัด"]], | |
interpretation="default", | |
) | |
iface.launch() | |