caif / app.py
Балаганский Никита Николаевич
fix axis titles
d29599d
raw
history blame
6.64 kB
import os
from typing import Tuple
import streamlit as st
import torch
import transformers
from transformers import AutoConfig
import tokenizers
from sampling import CAIFSampler, TopKWithTemperatureSampler
from generator import Generator
import pickle
from plotly import graph_objects as go
import numpy as np
device = "cuda" if torch.cuda.is_available() else "cpu"
ATTRIBUTE_MODELS = {
"Russian": (
"cointegrated/rubert-tiny-toxicity",
'tinkoff-ai/response-quality-classifier-tiny',
'tinkoff-ai/response-quality-classifier-base',
'tinkoff-ai/response-quality-classifier-large',
"SkolkovoInstitute/roberta_toxicity_classifier",
"SkolkovoInstitute/russian_toxicity_classifier"
),
"English": (
"unitary/toxic-bert",
)
}
LANGUAGE_MODELS = {
"Russian": (
'sberbank-ai/rugpt3small_based_on_gpt2',
"sberbank-ai/rugpt3large_based_on_gpt2"
),
"English": ("gpt2", "distilgpt2", "EleutherAI/gpt-neo-1.3B")
}
ATTRIBUTE_MODEL_LABEL = {
"Russian": 'Выберите модель классификации',
"English": "Choose attribute model"
}
LM_LABEL = {
"English": "Choose language model",
"Russian": "Выберите языковую модель"
}
ATTRIBUTE_LABEL = {
"Russian": "Веберите нужный атрибут текста",
"English": "Choose desired attribute",
}
TEXT_PROMPT_LABEL = {
"English": "Text prompt",
"Russian": "Начало текста"
}
PROMPT_EXAMPLE = {
"English": "Hello, today I want to show you a new method",
"Russian": "Привет, сегодня я"
}
def main():
st.header("CAIF")
with open("entropy_cdf.pkl", "rb") as inp:
x_s, y_s = pickle.load(inp)
scatter = go.Scatter({
"x": x_s,
"y": y_s,
"name": "GPT2",
"mode": "lines",
}
)
layout = go.Layout({
"yaxis": {
"title": "Speedup",
"tickvals": [0, 0.5, 0.8, 1],
"ticktext": ["1x", "2x", "5x", "10x"]
},
"xaxis": {"title": "Entropy threshold"},
"template": "plotly_white",
})
language = st.selectbox("Language", ("English", "Russian"))
cls_model_name = st.selectbox(
ATTRIBUTE_MODEL_LABEL[language],
ATTRIBUTE_MODELS[language]
)
lm_model_name = st.selectbox(
LM_LABEL[language],
LANGUAGE_MODELS[language]
)
cls_model_config = AutoConfig.from_pretrained(cls_model_name)
if cls_model_config.problem_type == "multi_label_classification":
label2id = cls_model_config.label2id
label_key = st.selectbox(ATTRIBUTE_LABEL[language], label2id.keys())
target_label_id = label2id[label_key]
else:
label2id = cls_model_config.label2id
print(list(label2id.keys()))
label_key = st.selectbox(ATTRIBUTE_LABEL[language], [list(label2id.keys())[-1]])
target_label_id = 1
prompt = st.text_input(TEXT_PROMPT_LABEL[language], PROMPT_EXAMPLE[language])
st.latex(r"p(x_i|x_{<i}, c) \propto p(x_i|x_{<i})p(c|x_{\leq i})^{\alpha}")
alpha = st.slider("Alpha", min_value=-10, max_value=10, step=1, value=0)
entropy_threshold = st.slider("Entropy threshold", min_value=0., max_value=10., step=.1, value=2.)
plot_idx = np.argmin(np.abs(entropy_threshold - x_s))
scatter_tip = go.Scatter({
"x": [x_s[plot_idx]],
"y": [y_s[plot_idx]],
"mode": "markers"
})
scatter_tip_lines = go.Scatter({
"x": [0, x_s[plot_idx]],
"y": [y_s[plot_idx]] * 2,
"mode": "lines",
"line": {
"color": "grey",
"dash": "dash"
}
})
figure = go.Figure(data=[scatter, scatter_tip, scatter_tip_lines], layout=layout)
figure.update_layout(paper_bgcolor="#FFFFFF", plot_bgcolor='#FFFFFF', showlegend=False)
st.plotly_chart(figure, use_container_width=True)
auth_token = os.environ.get('TOKEN') or True
fp16 = st.checkbox("FP16", value=True)
with st.spinner('Running inference...'):
text = inference(
lm_model_name=lm_model_name,
cls_model_name=cls_model_name,
prompt=prompt,
alpha=alpha,
target_label_id=target_label_id,
entropy_threshold=entropy_threshold,
fp16=fp16,
)
st.subheader("Generated text:")
st.write(text)
@st.cache(hash_funcs={tokenizers.Tokenizer: lambda lm_tokenizer: hash(lm_tokenizer.to_str)}, allow_output_mutation=True)
def load_generator(lm_model_name: str) -> Generator:
with st.spinner('Loading language model...'):
generator = Generator(lm_model_name=lm_model_name, device=device)
return generator
#@st.cache(hash_funcs={tokenizers.Tokenizer: lambda lm_tokenizer: hash(lm_tokenizer.to_str)}, allow_output_mutation=True)
def load_sampler(cls_model_name, lm_tokenizer):
with st.spinner('Loading classifier model...'):
sampler = CAIFSampler(classifier_name=cls_model_name, lm_tokenizer=lm_tokenizer, device=device)
return sampler
@st.cache
def inference(
lm_model_name: str,
cls_model_name: str,
prompt: str,
fp16: bool = True,
alpha: float = 5,
target_label_id: int = 0,
entropy_threshold: float = 0
) -> str:
torch.set_grad_enabled(False)
generator = load_generator(lm_model_name=lm_model_name)
lm_tokenizer = transformers.AutoTokenizer.from_pretrained(lm_model_name)
if alpha != 0:
caif_sampler = load_sampler(cls_model_name=cls_model_name, lm_tokenizer=lm_tokenizer)
if entropy_threshold < 0.05:
entropy_threshold = None
else:
caif_sampler = None
entropy_threshold = None
generator.set_caif_sampler(caif_sampler)
ordinary_sampler = TopKWithTemperatureSampler()
kwargs = {
"top_k": 20,
"temperature": 1.0,
"top_k_classifier": 100,
"classifier_weight": alpha,
"target_cls_id": target_label_id
}
generator.set_ordinary_sampler(ordinary_sampler)
if device == "cpu":
autocast = torch.cpu.amp.autocast
else:
autocast = torch.cuda.amp.autocast
with autocast(fp16):
print(f"Generating for prompt: {prompt}")
sequences, tokens = generator.sample_sequences(
num_samples=1,
input_prompt=prompt,
max_length=20,
caif_period=1,
entropy=entropy_threshold,
**kwargs
)
print(f"Output for prompt: {sequences}")
return sequences[0]
if __name__ == "__main__":
main()