Spaces:
Build error
Build error
File size: 3,604 Bytes
3194719 7ac0161 3194719 7ac0161 3194719 7ac0161 3194719 7ac0161 3194719 7ac0161 3194719 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 |
import os
import random
from functools import partial
import jax
import numpy as np
import jax.numpy as jnp
from PIL import Image
from dalle_mini import DalleBart, DalleBartProcessor
from vqgan_jax.modeling_flax_vqgan import VQModel
from flax.jax_utils import replicate
from flax.training.common_utils import shard_prng_key
import wandb
from consts import COND_SCALE, DALLE_COMMIT_ID, DALLE_MODEL_MEGA_FULL, DALLE_MODEL_MEGA, DALLE_MODEL_MINI, GEN_TOP_K, GEN_TOP_P, TEMPERATURE, VQGAN_COMMIT_ID, VQGAN_REPO, ModelSize
os.environ["XLA_PYTHON_CLIENT_ALLOCATOR"] = "platform" # https://github.com/saharmor/dalle-playground/issues/14#issuecomment-1147849318
os.environ["WANDB_SILENT"] = "true"
wandb.init(anonymous="must")
# model inference
@partial(jax.pmap, axis_name="batch", static_broadcasted_argnums=(3, 4, 5, 6, 7))
def p_generate(
tokenized_prompt, key, params, top_k, top_p, temperature, condition_scale, model
):
return model.generate(
**tokenized_prompt,
prng_key=key,
params=params,
top_k=top_k,
top_p=top_p,
temperature=temperature,
condition_scale=condition_scale,
)
# decode images
@partial(jax.pmap, axis_name="batch", static_broadcasted_argnums=(0))
def p_decode(vqgan, indices, params):
return vqgan.decode_code(indices, params=params)
class DalleModel:
def __init__(self, model_version: ModelSize) -> None:
if model_version == ModelSize.MEGA_FULL:
dalle_model = DALLE_MODEL_MEGA_FULL
dtype = jnp.float16
elif model_version == ModelSize.MEGA:
dalle_model = DALLE_MODEL_MEGA
dtype = jnp.float16
else:
dalle_model = DALLE_MODEL_MINI
dtype = jnp.float32
# Load dalle-mini
self.model, params = DalleBart.from_pretrained(
dalle_model, revision=DALLE_COMMIT_ID, dtype=dtype, _do_init=False
)
# Load VQGAN
self.vqgan, vqgan_params = VQModel.from_pretrained(
VQGAN_REPO, revision=VQGAN_COMMIT_ID, _do_init=False
)
self.params = replicate(params)
self.vqgan_params = replicate(vqgan_params)
self.processor = DalleBartProcessor.from_pretrained(dalle_model, revision=DALLE_COMMIT_ID)
def tokenize_prompt(self, prompt: str):
tokenized_prompt = self.processor([prompt])
return replicate(tokenized_prompt)
def generate_images(self, prompt: str, num_predictions: int):
tokenized_prompt = self.tokenize_prompt(prompt)
# create a random key
seed = random.randint(0, 2 ** 32 - 1)
key = jax.random.PRNGKey(seed)
# generate images
images = []
for i in range(max(num_predictions // jax.device_count(), 1)):
# get a new key
key, subkey = jax.random.split(key)
encoded_images = p_generate(
tokenized_prompt,
shard_prng_key(subkey),
self.params,
GEN_TOP_K,
GEN_TOP_P,
TEMPERATURE,
COND_SCALE,
self.model
)
# remove BOS
encoded_images = encoded_images.sequences[..., 1:]
# decode images
decoded_images = p_decode(self.vqgan, encoded_images, self.vqgan_params)
decoded_images = decoded_images.clip(0.0, 1.0).reshape((-1, 256, 256, 3))
for img in decoded_images:
images.append(Image.fromarray(np.asarray(img * 255, dtype=np.uint8)))
return images |