thuyentruong commited on
Commit
4939ea5
1 Parent(s): 8c5de0d

Update app.py

Browse files
Files changed (1) hide show
  1. app.py +25 -18
app.py CHANGED
@@ -3,9 +3,7 @@ import numpy as np
3
  import torch
4
  from datasets import load_dataset
5
 
6
- # from transformers import SpeechT5ForTextToSpeech, SpeechT5HifiGan, SpeechT5Processor,
7
- from transformers import pipeline
8
- from transformers import VitsModel, VitsTokenizer
9
 
10
 
11
  device = "cuda:0" if torch.cuda.is_available() else "cpu"
@@ -14,28 +12,37 @@ device = "cuda:0" if torch.cuda.is_available() else "cpu"
14
  asr_pipe = pipeline("automatic-speech-recognition", model="openai/whisper-base", device=device)
15
 
16
  # load text-to-speech checkpoint and speaker embeddings
17
- # processor = SpeechT5Processor.from_pretrained("microsoft/speecht5_tts")
18
- # model = SpeechT5ForTextToSpeech.from_pretrained("microsoft/speecht5_tts").to(device)
19
- # vocoder = SpeechT5HifiGan.from_pretrained("microsoft/speecht5_hifigan").to(device)
20
 
21
- # load text-to-speach checkpoint for german language
22
- model = VitsModel.from_pretrained("Matthijs/mms-tts-deu")
23
- tokenizer = VitsTokenizer.from_pretrained("Matthijs/mms-tts-deu")
24
 
25
  embeddings_dataset = load_dataset("Matthijs/cmu-arctic-xvectors", split="validation")
26
  speaker_embeddings = torch.tensor(embeddings_dataset[7306]["xvector"]).unsqueeze(0)
27
 
28
 
29
  def translate(audio):
30
- outputs = asr_pipe(audio, max_new_tokens=256, generate_kwargs={"task": "translate", "language": "de"})
 
 
31
  return outputs["text"]
32
 
33
 
34
  def synthesise(text):
35
- inputs = tokenizer(text=text, return_tensors="pt")
36
- with torch.no_grad():
37
- speech = model(inputs["input_ids"].to(device))
38
- return speech.audio[0]
 
 
 
 
 
 
 
 
 
39
 
40
 
41
  def speech_to_speech_translation(audio):
@@ -47,8 +54,8 @@ def speech_to_speech_translation(audio):
47
 
48
  title = "Cascaded STST"
49
  description = """
50
- Demo for cascaded speech-to-speech translation (STST), mapping from source speech in any language to target speech in German. Demo uses OpenAI's [Whisper Base](https://huggingface.co/openai/whisper-base) model for speech translation, and Microsoft's
51
- [SpeechT5 TTS](https://huggingface.co/microsoft/speecht5_tts) model for text-to-speech:
52
  ![Cascaded STST](https://huggingface.co/datasets/huggingface-course/audio-course-images/resolve/main/s2st_cascaded.png "Diagram of cascaded speech to speech translation")
53
  """
54
 
@@ -56,7 +63,7 @@ demo = gr.Blocks()
56
 
57
  mic_translate = gr.Interface(
58
  fn=speech_to_speech_translation,
59
- inputs=gr.Audio(sources="microphone", type="filepath"),
60
  outputs=gr.Audio(label="Generated Speech", type="numpy"),
61
  title=title,
62
  description=description,
@@ -64,7 +71,7 @@ mic_translate = gr.Interface(
64
 
65
  file_translate = gr.Interface(
66
  fn=speech_to_speech_translation,
67
- inputs=gr.Audio(sources="upload", type="filepath"),
68
  outputs=gr.Audio(label="Generated Speech", type="numpy"),
69
  examples=[["./example.wav"]],
70
  title=title,
 
3
  import torch
4
  from datasets import load_dataset
5
 
6
+ from transformers import SpeechT5ForTextToSpeech, SpeechT5HifiGan, SpeechT5Processor, pipeline
 
 
7
 
8
 
9
  device = "cuda:0" if torch.cuda.is_available() else "cpu"
 
12
  asr_pipe = pipeline("automatic-speech-recognition", model="openai/whisper-base", device=device)
13
 
14
  # load text-to-speech checkpoint and speaker embeddings
15
+ tts_checkpoint = "sanchit-gandhi/speecht5_tts_vox_nl"
16
+ processor = SpeechT5Processor.from_pretrained(tts_checkpoint)
 
17
 
18
+ model = SpeechT5ForTextToSpeech.from_pretrained(tts_checkpoint).to(device)
19
+ vocoder = SpeechT5HifiGan.from_pretrained("microsoft/speecht5_hifigan").to(device)
 
20
 
21
  embeddings_dataset = load_dataset("Matthijs/cmu-arctic-xvectors", split="validation")
22
  speaker_embeddings = torch.tensor(embeddings_dataset[7306]["xvector"]).unsqueeze(0)
23
 
24
 
25
  def translate(audio):
26
+ # Trick Whisper to translate from any language to Dutch.
27
+ # Note that using task=translate will translate to English instead.
28
+ outputs = asr_pipe(audio, max_new_tokens=256, generate_kwargs={"task": "transcribe", "language": "dutch"})
29
  return outputs["text"]
30
 
31
 
32
  def synthesise(text):
33
+ # Need to specific truncate to max text positions.
34
+ # Otherwise model.generate_speech will throw errors.
35
+ inputs = processor(
36
+ text=text,
37
+ # max_length=200,
38
+ max_length=598,
39
+ truncation=True,
40
+ # padding=True,
41
+ return_tensors="pt"
42
+ )
43
+ # inputs = processor(text=text, return_tensors="pt")
44
+ speech = model.generate_speech(inputs["input_ids"].to(device), speaker_embeddings.to(device), vocoder=vocoder)
45
+ return speech.cpu()
46
 
47
 
48
  def speech_to_speech_translation(audio):
 
54
 
55
  title = "Cascaded STST"
56
  description = """
57
+ Demo for cascaded speech-to-speech translation (STST), mapping from source speech in any language to target speech in Dutch. Demo uses OpenAI's [Whisper Tiny](https://huggingface.co/openai/whisper-tiny) model for speech translation, and a finetuned
58
+ [SpeechT5 TTS](https://huggingface.co/sanchit-gandhi/speecht5_tts_vox_nl) model for text-to-speech:
59
  ![Cascaded STST](https://huggingface.co/datasets/huggingface-course/audio-course-images/resolve/main/s2st_cascaded.png "Diagram of cascaded speech to speech translation")
60
  """
61
 
 
63
 
64
  mic_translate = gr.Interface(
65
  fn=speech_to_speech_translation,
66
+ inputs=gr.Audio(label="microphone", type="filepath"),
67
  outputs=gr.Audio(label="Generated Speech", type="numpy"),
68
  title=title,
69
  description=description,
 
71
 
72
  file_translate = gr.Interface(
73
  fn=speech_to_speech_translation,
74
+ inputs=gr.Audio(label="upload", type="filepath"),
75
  outputs=gr.Audio(label="Generated Speech", type="numpy"),
76
  examples=[["./example.wav"]],
77
  title=title,