File size: 9,466 Bytes
d4ff2d1
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
fcec301
 
d4ff2d1
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
fcec301
eaadf1d
 
 
d4ff2d1
 
 
 
 
 
 
 
 
fcec301
eaadf1d
d4ff2d1
 
eaadf1d
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
fcec301
d4ff2d1
 
fcec301
d4ff2d1
 
 
 
 
 
 
 
 
 
 
 
fcec301
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
eaadf1d
0bcf830
 
 
d4ff2d1
 
 
f2d7f1f
 
d4ff2d1
 
 
fcec301
d4ff2d1
fcec301
 
 
d4ff2d1
 
 
 
 
 
 
 
 
 
 
02c5d0f
 
 
fcec301
 
 
 
 
 
02c5d0f
 
d4ff2d1
 
fcec301
d4ff2d1
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
import fnmatch
import gradio as gr
import pandas as pd
import plotly.express as px
from rapidfuzz import fuzz
import re

def load_leaderboard():
    # Load validation / test CSV files
    results_csv_files = {
        'imagenet': 'https://raw.githubusercontent.com/huggingface/pytorch-image-models/main/results/results-imagenet.csv',
        'real': 'https://raw.githubusercontent.com/huggingface/pytorch-image-models/main/results/results-imagenet-real.csv',
        'v2': 'https://raw.githubusercontent.com/huggingface/pytorch-image-models/main/results/results-imagenetv2-matched-frequency.csv',
        'sketch': 'https://raw.githubusercontent.com/huggingface/pytorch-image-models/main/results/results-sketch.csv',
        'a': 'https://raw.githubusercontent.com/huggingface/pytorch-image-models/main/results/results-imagenet-a.csv',
        'r': 'https://raw.githubusercontent.com/huggingface/pytorch-image-models/main/results/results-imagenet-r.csv',
    }

    # Load benchmark CSV files
    main_bench = 'amp-nhwc-pt210-cu121-rtx3090'
    benchmark_csv_files = {
        'amp-nhwc-pt210-cu121-rtx3090': 'https://raw.githubusercontent.com/huggingface/pytorch-image-models/main/results/benchmark-infer-amp-nhwc-pt210-cu121-rtx3090.csv',
        'fp32-nchw-pt221-cpu-i9_10940x-dynamo': 'https://raw.githubusercontent.com/huggingface/pytorch-image-models/main/results/benchmark-infer-fp32-nchw-pt221-cpu-i9_10940x-dynamo.csv',
    }
    # FIXME support selecting benchmark 'infer_samples_per_sec' / 'infer_step_time' from different benchmark files.
    
    dataframes = {name: pd.read_csv(url) for name, url in results_csv_files.items()}
    bench_dataframes = {name: pd.read_csv(url) for name, url in benchmark_csv_files.items()}
    main_bench_dataframe = bench_dataframes[main_bench]
    
    # Clean up dataframes
    remove_column_names = ["top1_err", "top5_err", "top1_diff", "top5_diff", "rank_diff", "param_count"]
    for df in dataframes.values():
        for col in remove_column_names:
            if col in df.columns:
                df.drop(columns=[col], inplace=True)    

    # Rename / process results columns
    for name, df in dataframes.items():
        df.rename(columns={"top1": f"{name}_top1", "top5": f"{name}_top5"}, inplace=True)
        df['arch_name'] = df['model'].apply(lambda x: x.split('.')[0])    
    
    # Process benchmark dataframe
    main_bench_dataframe['arch_name'] = main_bench_dataframe['model']
    main_bench_dataframe.rename(columns={'infer_img_size': 'img_size'}, inplace=True)
    
    # Merge all result dataframes
    result = dataframes['imagenet']
    for name, df in dataframes.items():
        if name != 'imagenet':
            result = pd.merge(result, df, on=['arch_name', 'model', 'img_size', 'crop_pct', 'interpolation'], how='outer')
    
    # Merge with benchmark data
    result = pd.merge(result, main_bench_dataframe, on=['arch_name', 'img_size'], how='left', suffixes=('', '_benchmark'))
    
    # Calculate average scores
    top1_columns = [col for col in result.columns if col.endswith('_top1')]
    top5_columns = [col for col in result.columns if col.endswith('_top5')]
    result['avg_top1'] = result[top1_columns].mean(axis=1)
    result['avg_top5'] = result[top5_columns].mean(axis=1)
    
    # Reorder columns
    first_columns = ['model', 'img_size', 'avg_top1', 'avg_top5']
    other_columns = [col for col in result.columns if col not in first_columns and col != 'model_benchmark']
    result = result[first_columns + other_columns]
    
    # Drop columns that are no longer needed / add too much noise
    result.drop('arch_name', axis=1, inplace=True)
    result.drop('crop_pct', axis=1, inplace=True)
    result.drop('interpolation', axis=1, inplace=True)

    result['highlighted'] = False
    
    # Round numerical values
    result = result.round(2)
    
    return result


REGEX_PREFIX = "re:"

def auto_match(pattern, text):
    # Check if it's a regex pattern (starts with 're:')
    if pattern.startswith(REGEX_PREFIX):
        regex_pattern = pattern[len(REGEX_PREFIX):].strip()
        try:
            return bool(re.match(regex_pattern, text, re.IGNORECASE))
        except re.error:
            # If it's an invalid regex, return False
            return False
    
    # Check if it's a wildcard pattern
    elif any(char in pattern for char in ['*', '?']):
        return fnmatch.fnmatch(text.lower(), pattern.lower())
    
    # If not regex or wildcard, use fuzzy matching
    else:
        return fuzz.partial_ratio(
            pattern.lower(), text.lower(), score_cutoff=90) > 0


def filter_leaderboard(df, model_name, sort_by):
    if not model_name:
        return df.sort_values(by=sort_by, ascending=False)
    
    mask = df['model'].apply(lambda x: auto_match(model_name, x))
    filtered_df = df[mask].sort_values(by=sort_by, ascending=False)
    
    return filtered_df


def create_scatter_plot(df, x_axis, y_axis, model_filter, highlight_filter):
    selected_color = 'orange'
    
    fig = px.scatter(
        df,
        x=x_axis,
        y=y_axis,
        log_x=True,
        log_y=True,
        hover_data=['model'],
        trendline='ols',
        trendline_options=dict(log_x=True, log_y=True),
        color='highlighted',
        color_discrete_map={True: selected_color, False: 'blue'},
        title=f'{y_axis} vs {x_axis}'
    )

    # Create legend labels
    legend_labels = {}
    if highlight_filter:
        legend_labels[True] = f'{highlight_filter}'
        legend_labels[False] = f'{model_filter or "all models"}'
    else:
        legend_labels[False] = f'{model_filter or "all models"}'
    
    # Update legend
    for trace in fig.data:
        if isinstance(trace.marker.color, str):  # This is for the scatter traces
            trace.name = legend_labels.get(trace.marker.color == selected_color, '')
    
    fig.update_layout(
        showlegend=True,
        legend_title_text='Model Selection'
    )
    
    return fig


# Load the leaderboard data
full_df = load_leaderboard()

# Define the available columns for sorting and plotting
sort_columns = ['avg_top1', 'avg_top5', 'infer_samples_per_sec', 'param_count', 'infer_gmacs', 'infer_macts']
plot_columns = ['infer_samples_per_sec', 'infer_gmacs', 'infer_macts', 'param_count', 'avg_top1', 'avg_top5']

DEFAULT_SEARCH = ""
DEFAULT_SORT = "avg_top1"
DEFAULT_X = "infer_samples_per_sec"
DEFAULT_Y = "avg_top1"

def update_leaderboard_and_plot(
        model_name=DEFAULT_SEARCH,
        highlight_name=None,
        sort_by=DEFAULT_SORT,
        x_axis=DEFAULT_X,
        y_axis=DEFAULT_Y,
):
    filtered_df = filter_leaderboard(full_df, model_name, sort_by)    
    
    # Apply the highlight filter to the entire dataset so the output will be union (comparison) if the filters are disjoint
    highlight_df = filter_leaderboard(full_df, highlight_name, sort_by) if highlight_name else None
    
    # Combine filtered_df and highlight_df, removing duplicates
    if highlight_df is not None:
        combined_df = pd.concat([filtered_df, highlight_df]).drop_duplicates().reset_index(drop=True)
        combined_df = combined_df.sort_values(by=sort_by, ascending=False)
        combined_df['highlighted'] = combined_df['model'].isin(highlight_df['model'])
    else:
        combined_df = filtered_df
           
    fig = create_scatter_plot(combined_df, x_axis, y_axis, model_name, highlight_name)
    display_df = combined_df.drop(columns=['highlighted'])
    display_df = display_df.style.apply(lambda x: ['background-color: #FFA500' if combined_df.loc[x.name, 'highlighted'] else '' for _ in x], axis=1).format(precision=2)
    return display_df, fig


with gr.Blocks(title="The timm Leaderboard") as app:
    gr.HTML("<center><h1>The timm (PyTorch Image Models) Leaderboard</h1></center>")
    gr.HTML("<p>This leaderboard is based on the results of the models from <a href='https://github.com/huggingface/pytorch-image-models'>timm</a>.</p>")
    gr.HTML("<p>Search tips:<br>- Use wildcards (* or ?) for pattern matching<br>- Use 're:' prefix for regex search<br>- Otherwise, fuzzy matching will be used</p>")
    
    with gr.Row():
        search_bar = gr.Textbox(lines=1, label="Model Filter", placeholder="e.g. resnet*, re:^vit, efficientnet", scale=3)
        sort_dropdown = gr.Dropdown(choices=sort_columns, label="Sort by", value=DEFAULT_SORT, scale=1)

    with gr.Row():
        highlight_bar = gr.Textbox(lines=1, label="Model Highlight/Compare Filter", placeholder="e.g. convnext*, re:^efficient")
    
    with gr.Row():
        x_axis = gr.Dropdown(choices=plot_columns, label="X-axis", value=DEFAULT_X)
        y_axis = gr.Dropdown(choices=plot_columns, label="Y-axis", value=DEFAULT_Y)
    
    update_btn = gr.Button(value="Update", variant="primary")

    leaderboard = gr.Dataframe()
    plot = gr.Plot()
    
    app.load(update_leaderboard_and_plot, outputs=[leaderboard, plot])
    
    search_bar.submit(
        update_leaderboard_and_plot,
        inputs=[search_bar, highlight_bar, sort_dropdown, x_axis, y_axis],
        outputs=[leaderboard, plot]
    )
    highlight_bar.submit(
        update_leaderboard_and_plot,
        inputs=[search_bar, highlight_bar, sort_dropdown, x_axis, y_axis],
        outputs=[leaderboard, plot]
    )
    update_btn.click(
        update_leaderboard_and_plot,
        inputs=[search_bar, highlight_bar, sort_dropdown, x_axis, y_axis],
        outputs=[leaderboard, plot]
    )

app.launch()