Spaces:
Running
Running
Create app.py
Browse files
app.py
ADDED
@@ -0,0 +1,171 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import fnmatch
|
2 |
+
import gradio as gr
|
3 |
+
import pandas as pd
|
4 |
+
import plotly.express as px
|
5 |
+
from rapidfuzz import fuzz
|
6 |
+
import re
|
7 |
+
|
8 |
+
def load_leaderboard():
|
9 |
+
# Load validation / test CSV files
|
10 |
+
results_csv_files = {
|
11 |
+
'imagenet': 'https://raw.githubusercontent.com/huggingface/pytorch-image-models/main/results/results-imagenet.csv',
|
12 |
+
'real': 'https://raw.githubusercontent.com/huggingface/pytorch-image-models/main/results/results-imagenet-real.csv',
|
13 |
+
'v2': 'https://raw.githubusercontent.com/huggingface/pytorch-image-models/main/results/results-imagenetv2-matched-frequency.csv',
|
14 |
+
'sketch': 'https://raw.githubusercontent.com/huggingface/pytorch-image-models/main/results/results-sketch.csv',
|
15 |
+
'a': 'https://raw.githubusercontent.com/huggingface/pytorch-image-models/main/results/results-imagenet-a.csv',
|
16 |
+
'r': 'https://raw.githubusercontent.com/huggingface/pytorch-image-models/main/results/results-imagenet-r.csv',
|
17 |
+
}
|
18 |
+
|
19 |
+
# Load benchmark CSV files
|
20 |
+
main_bench = 'amp-nhwc-pt210-cu121-rtx3090'
|
21 |
+
benchmark_csv_files = {
|
22 |
+
'amp-nhwc-pt210-cu121-rtx3090': 'https://raw.githubusercontent.com/huggingface/pytorch-image-models/main/results/benchmark-infer-amp-nhwc-pt210-cu121-rtx3090.csv',
|
23 |
+
'fp32-nchw-pt221-cpu-i9_10940x-dynamo': 'https://raw.githubusercontent.com/huggingface/pytorch-image-models/main/results/benchmark-infer-fp32-nchw-pt221-cpu-i9_10940x-dynamo.csv',
|
24 |
+
}
|
25 |
+
# FIXME support selecting benchmark 'infer_samples_per_sec' / 'infer_step_time' from different benchmark files.
|
26 |
+
|
27 |
+
dataframes = {name: pd.read_csv(url) for name, url in results_csv_files.items()}
|
28 |
+
bench_dataframes = {name: pd.read_csv(url) for name, url in benchmark_csv_files.items()}
|
29 |
+
main_bench_dataframe = bench_dataframes[main_bench]
|
30 |
+
|
31 |
+
# Clean up dataframes
|
32 |
+
remove_column_names = ["top1_err", "top5_err", "top1_diff", "top5_diff", "rank_diff", "param_count"]
|
33 |
+
for df in dataframes.values():
|
34 |
+
for col in remove_column_names:
|
35 |
+
if col in df.columns:
|
36 |
+
df.drop(columns=[col], inplace=True)
|
37 |
+
|
38 |
+
# Rename / process results columns
|
39 |
+
for name, df in dataframes.items():
|
40 |
+
df.rename(columns={"top1": f"{name}_top1", "top5": f"{name}_top5"}, inplace=True)
|
41 |
+
df['arch_name'] = df['model'].apply(lambda x: x.split('.')[0])
|
42 |
+
|
43 |
+
# Process benchmark dataframe
|
44 |
+
main_bench_dataframe['arch_name'] = main_bench_dataframe['model']
|
45 |
+
main_bench_dataframe.rename(columns={'infer_img_size': 'img_size'}, inplace=True)
|
46 |
+
|
47 |
+
# Merge all result dataframes
|
48 |
+
result = dataframes['imagenet']
|
49 |
+
for name, df in dataframes.items():
|
50 |
+
if name != 'imagenet':
|
51 |
+
result = pd.merge(result, df, on=['arch_name', 'model', 'img_size', 'crop_pct', 'interpolation'], how='outer')
|
52 |
+
|
53 |
+
# Merge with benchmark data
|
54 |
+
result = pd.merge(result, main_bench_dataframe, on=['arch_name', 'img_size'], how='left', suffixes=('', '_benchmark'))
|
55 |
+
|
56 |
+
# Calculate average scores
|
57 |
+
top1_columns = [col for col in result.columns if col.endswith('_top1')]
|
58 |
+
top5_columns = [col for col in result.columns if col.endswith('_top5')]
|
59 |
+
result['avg_top1'] = result[top1_columns].mean(axis=1)
|
60 |
+
result['avg_top5'] = result[top5_columns].mean(axis=1)
|
61 |
+
|
62 |
+
# Reorder columns
|
63 |
+
first_columns = ['model', 'img_size', 'avg_top1', 'avg_top5']
|
64 |
+
other_columns = [col for col in result.columns if col not in first_columns and col != 'model_benchmark']
|
65 |
+
result = result[first_columns + other_columns]
|
66 |
+
|
67 |
+
# Drop columns that are no longer needed / add too much noise
|
68 |
+
result.drop('arch_name', axis=1, inplace=True)
|
69 |
+
result.drop('crop_pct', axis=1, inplace=True)
|
70 |
+
result.drop('interpolation', axis=1, inplace=True)
|
71 |
+
|
72 |
+
# Round numerical values
|
73 |
+
result = result.round(2)
|
74 |
+
|
75 |
+
return result
|
76 |
+
|
77 |
+
|
78 |
+
REGEX_PREFIX = "re:"
|
79 |
+
|
80 |
+
def auto_match(pattern, text):
|
81 |
+
# Check if it's a regex pattern (starts with 're:')
|
82 |
+
if pattern.startswith(REGEX_PREFIX):
|
83 |
+
regex_pattern = pattern[len(REGEX_PREFIX):].strip()
|
84 |
+
try:
|
85 |
+
return bool(re.match(regex_pattern, text, re.IGNORECASE))
|
86 |
+
except re.error:
|
87 |
+
# If it's an invalid regex, return False
|
88 |
+
return False
|
89 |
+
|
90 |
+
# Check if it's a wildcard pattern
|
91 |
+
elif any(char in pattern for char in ['*', '?']):
|
92 |
+
return fnmatch.fnmatch(text.lower(), pattern.lower())
|
93 |
+
|
94 |
+
# If not regex or wildcard, use fuzzy matching
|
95 |
+
else:
|
96 |
+
return fuzz.partial_ratio(
|
97 |
+
pattern.lower(), text.lower(), score_cutoff=90) > 0
|
98 |
+
|
99 |
+
|
100 |
+
def filter_leaderboard(df, model_name, sort_by):
|
101 |
+
if not model_name:
|
102 |
+
return df.sort_values(by=sort_by, ascending=False)
|
103 |
+
|
104 |
+
mask = df['model'].apply(lambda x: auto_match(model_name, x))
|
105 |
+
filtered_df = df[mask].sort_values(by=sort_by, ascending=False)
|
106 |
+
|
107 |
+
return filtered_df
|
108 |
+
|
109 |
+
def create_scatter_plot(df, x_axis, y_axis):
|
110 |
+
fig = px.scatter(
|
111 |
+
df,
|
112 |
+
x=x_axis,
|
113 |
+
y=y_axis,
|
114 |
+
log_x=True,
|
115 |
+
log_y=True,
|
116 |
+
hover_data=['model'],
|
117 |
+
trendline='ols',
|
118 |
+
trendline_options=dict(log_x=True, log_y=True),
|
119 |
+
title=f'{y_axis} vs {x_axis}'
|
120 |
+
)
|
121 |
+
return fig
|
122 |
+
|
123 |
+
# Load the leaderboard data
|
124 |
+
full_df = load_leaderboard()
|
125 |
+
|
126 |
+
# Define the available columns for sorting and plotting
|
127 |
+
sort_columns = ['avg_top1', 'avg_top5', 'infer_samples_per_sec', 'param_count', 'infer_gmacs', 'infer_macts']
|
128 |
+
plot_columns = ['infer_samples_per_sec', 'infer_gmacs', 'infer_macts', 'param_count', 'avg_top1', 'avg_top5']
|
129 |
+
|
130 |
+
DEFAULT_SEARCH = ""
|
131 |
+
DEFAULT_SORT = "avg_top1"
|
132 |
+
DEFAULT_X = "infer_samples_per_sec"
|
133 |
+
DEFAULT_Y = "avg_top1"
|
134 |
+
|
135 |
+
def update_leaderboard_and_plot(model_name=DEFAULT_SEARCH, sort_by=DEFAULT_SORT, x_axis=DEFAULT_X, y_axis=DEFAULT_Y):
|
136 |
+
filtered_df = filter_leaderboard(
|
137 |
+
full_df, # in outer scope
|
138 |
+
model_name,
|
139 |
+
sort_by,
|
140 |
+
)
|
141 |
+
fig = create_scatter_plot(filtered_df, x_axis, y_axis)
|
142 |
+
return filtered_df, fig
|
143 |
+
|
144 |
+
|
145 |
+
with gr.Blocks(title="The timm Leaderboard") as app:
|
146 |
+
gr.HTML("<center><h1>PyTorch Image Models Leaderboard</h1></center>")
|
147 |
+
gr.HTML("<p>This leaderboard is based on the results of the models from <a href='https://github.com/huggingface/pytorch-image-models'>PyTorch Image Models</a>.</p>")
|
148 |
+
gr.HTML("<p>Search tips:<br>- Use wildcards (* or ?) for pattern matching<br>- Use 're:' prefix for regex search<br>- Otherwise, fuzzy matching will be used</p>")
|
149 |
+
|
150 |
+
with gr.Row():
|
151 |
+
search_bar = gr.Textbox(lines=1, label="Search Model", placeholder="e.g. resnet*, re:^vit, efficientnet", scale=3)
|
152 |
+
sort_dropdown = gr.Dropdown(choices=sort_columns, label="Sort by", value=DEFAULT_SORT, scale=1)
|
153 |
+
|
154 |
+
with gr.Row():
|
155 |
+
x_axis = gr.Dropdown(choices=plot_columns, label="X-axis", value=DEFAULT_X)
|
156 |
+
y_axis = gr.Dropdown(choices=plot_columns, label="Y-axis", value=DEFAULT_Y)
|
157 |
+
|
158 |
+
update_btn = gr.Button(value="Update", variant="primary")
|
159 |
+
|
160 |
+
leaderboard = gr.Dataframe()
|
161 |
+
plot = gr.Plot()
|
162 |
+
|
163 |
+
app.load(update_leaderboard_and_plot, outputs=[leaderboard, plot])
|
164 |
+
|
165 |
+
update_btn.click(
|
166 |
+
update_leaderboard_and_plot,
|
167 |
+
inputs=[search_bar, sort_dropdown, x_axis, y_axis],
|
168 |
+
outputs=[leaderboard, plot]
|
169 |
+
)
|
170 |
+
|
171 |
+
app.launch()
|