leaderboard / app.py
rwightman's picture
rwightman HF staff
Update app.py
f2d7f1f verified
raw
history blame
7.22 kB
import fnmatch
import gradio as gr
import pandas as pd
import plotly.express as px
from rapidfuzz import fuzz
import re
def load_leaderboard():
# Load validation / test CSV files
results_csv_files = {
'imagenet': 'https://raw.githubusercontent.com/huggingface/pytorch-image-models/main/results/results-imagenet.csv',
'real': 'https://raw.githubusercontent.com/huggingface/pytorch-image-models/main/results/results-imagenet-real.csv',
'v2': 'https://raw.githubusercontent.com/huggingface/pytorch-image-models/main/results/results-imagenetv2-matched-frequency.csv',
'sketch': 'https://raw.githubusercontent.com/huggingface/pytorch-image-models/main/results/results-sketch.csv',
'a': 'https://raw.githubusercontent.com/huggingface/pytorch-image-models/main/results/results-imagenet-a.csv',
'r': 'https://raw.githubusercontent.com/huggingface/pytorch-image-models/main/results/results-imagenet-r.csv',
}
# Load benchmark CSV files
main_bench = 'amp-nhwc-pt210-cu121-rtx3090'
benchmark_csv_files = {
'amp-nhwc-pt210-cu121-rtx3090': 'https://raw.githubusercontent.com/huggingface/pytorch-image-models/main/results/benchmark-infer-amp-nhwc-pt210-cu121-rtx3090.csv',
'fp32-nchw-pt221-cpu-i9_10940x-dynamo': 'https://raw.githubusercontent.com/huggingface/pytorch-image-models/main/results/benchmark-infer-fp32-nchw-pt221-cpu-i9_10940x-dynamo.csv',
}
# FIXME support selecting benchmark 'infer_samples_per_sec' / 'infer_step_time' from different benchmark files.
dataframes = {name: pd.read_csv(url) for name, url in results_csv_files.items()}
bench_dataframes = {name: pd.read_csv(url) for name, url in benchmark_csv_files.items()}
main_bench_dataframe = bench_dataframes[main_bench]
# Clean up dataframes
remove_column_names = ["top1_err", "top5_err", "top1_diff", "top5_diff", "rank_diff", "param_count"]
for df in dataframes.values():
for col in remove_column_names:
if col in df.columns:
df.drop(columns=[col], inplace=True)
# Rename / process results columns
for name, df in dataframes.items():
df.rename(columns={"top1": f"{name}_top1", "top5": f"{name}_top5"}, inplace=True)
df['arch_name'] = df['model'].apply(lambda x: x.split('.')[0])
# Process benchmark dataframe
main_bench_dataframe['arch_name'] = main_bench_dataframe['model']
main_bench_dataframe.rename(columns={'infer_img_size': 'img_size'}, inplace=True)
# Merge all result dataframes
result = dataframes['imagenet']
for name, df in dataframes.items():
if name != 'imagenet':
result = pd.merge(result, df, on=['arch_name', 'model', 'img_size', 'crop_pct', 'interpolation'], how='outer')
# Merge with benchmark data
result = pd.merge(result, main_bench_dataframe, on=['arch_name', 'img_size'], how='left', suffixes=('', '_benchmark'))
# Calculate average scores
top1_columns = [col for col in result.columns if col.endswith('_top1')]
top5_columns = [col for col in result.columns if col.endswith('_top5')]
result['avg_top1'] = result[top1_columns].mean(axis=1)
result['avg_top5'] = result[top5_columns].mean(axis=1)
# Reorder columns
first_columns = ['model', 'img_size', 'avg_top1', 'avg_top5']
other_columns = [col for col in result.columns if col not in first_columns and col != 'model_benchmark']
result = result[first_columns + other_columns]
# Drop columns that are no longer needed / add too much noise
result.drop('arch_name', axis=1, inplace=True)
result.drop('crop_pct', axis=1, inplace=True)
result.drop('interpolation', axis=1, inplace=True)
# Round numerical values
result = result.round(2)
return result
REGEX_PREFIX = "re:"
def auto_match(pattern, text):
# Check if it's a regex pattern (starts with 're:')
if pattern.startswith(REGEX_PREFIX):
regex_pattern = pattern[len(REGEX_PREFIX):].strip()
try:
return bool(re.match(regex_pattern, text, re.IGNORECASE))
except re.error:
# If it's an invalid regex, return False
return False
# Check if it's a wildcard pattern
elif any(char in pattern for char in ['*', '?']):
return fnmatch.fnmatch(text.lower(), pattern.lower())
# If not regex or wildcard, use fuzzy matching
else:
return fuzz.partial_ratio(
pattern.lower(), text.lower(), score_cutoff=90) > 0
def filter_leaderboard(df, model_name, sort_by):
if not model_name:
return df.sort_values(by=sort_by, ascending=False)
mask = df['model'].apply(lambda x: auto_match(model_name, x))
filtered_df = df[mask].sort_values(by=sort_by, ascending=False)
return filtered_df
def create_scatter_plot(df, x_axis, y_axis):
fig = px.scatter(
df,
x=x_axis,
y=y_axis,
log_x=True,
log_y=True,
hover_data=['model'],
trendline='ols',
trendline_options=dict(log_x=True, log_y=True),
title=f'{y_axis} vs {x_axis}'
)
return fig
# Load the leaderboard data
full_df = load_leaderboard()
# Define the available columns for sorting and plotting
sort_columns = ['avg_top1', 'avg_top5', 'infer_samples_per_sec', 'param_count', 'infer_gmacs', 'infer_macts']
plot_columns = ['infer_samples_per_sec', 'infer_gmacs', 'infer_macts', 'param_count', 'avg_top1', 'avg_top5']
DEFAULT_SEARCH = ""
DEFAULT_SORT = "avg_top1"
DEFAULT_X = "infer_samples_per_sec"
DEFAULT_Y = "avg_top1"
def update_leaderboard_and_plot(model_name=DEFAULT_SEARCH, sort_by=DEFAULT_SORT, x_axis=DEFAULT_X, y_axis=DEFAULT_Y):
filtered_df = filter_leaderboard(
full_df, # in outer scope
model_name,
sort_by,
)
fig = create_scatter_plot(filtered_df, x_axis, y_axis)
return filtered_df, fig
with gr.Blocks(title="The timm Leaderboard") as app:
gr.HTML("<center><h1>The timm (PyTorch Image Models) Leaderboard</h1></center>")
gr.HTML("<p>This leaderboard is based on the results of the models from <a href='https://github.com/huggingface/pytorch-image-models'>timm</a>.</p>")
gr.HTML("<p>Search tips:<br>- Use wildcards (* or ?) for pattern matching<br>- Use 're:' prefix for regex search<br>- Otherwise, fuzzy matching will be used</p>")
with gr.Row():
search_bar = gr.Textbox(lines=1, label="Search Model", placeholder="e.g. resnet*, re:^vit, efficientnet", scale=3)
sort_dropdown = gr.Dropdown(choices=sort_columns, label="Sort by", value=DEFAULT_SORT, scale=1)
with gr.Row():
x_axis = gr.Dropdown(choices=plot_columns, label="X-axis", value=DEFAULT_X)
y_axis = gr.Dropdown(choices=plot_columns, label="Y-axis", value=DEFAULT_Y)
update_btn = gr.Button(value="Update", variant="primary")
leaderboard = gr.Dataframe()
plot = gr.Plot()
app.load(update_leaderboard_and_plot, outputs=[leaderboard, plot])
update_btn.click(
update_leaderboard_and_plot,
inputs=[search_bar, sort_dropdown, x_axis, y_axis],
outputs=[leaderboard, plot]
)
app.launch()