Spaces:
Running
Running
Create app.py
Browse files
app.py
ADDED
@@ -0,0 +1,151 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import gradio as gr
|
2 |
+
import torch
|
3 |
+
import timm
|
4 |
+
import torch.nn.functional as F
|
5 |
+
from timm.models import create_model
|
6 |
+
from timm.data import create_transform
|
7 |
+
from PIL import Image
|
8 |
+
import numpy as np
|
9 |
+
import matplotlib.pyplot as plt
|
10 |
+
from typing import List, Tuple, Dict
|
11 |
+
from collections import OrderedDict
|
12 |
+
|
13 |
+
class AttentionExtractor:
|
14 |
+
def __init__(self, model: torch.nn.Module):
|
15 |
+
self.model = model
|
16 |
+
self.attention_maps = OrderedDict()
|
17 |
+
self._register_hooks()
|
18 |
+
|
19 |
+
def _register_hooks(self):
|
20 |
+
def hook_fn(module, input, output):
|
21 |
+
if isinstance(output, tuple):
|
22 |
+
self.attention_maps[module.full_name] = output[1] # attention_probs
|
23 |
+
else:
|
24 |
+
self.attention_maps[module.full_name] = output
|
25 |
+
|
26 |
+
for name, module in self.model.named_modules():
|
27 |
+
if name.lower().endswith('.attn_drop'):
|
28 |
+
module.full_name = name
|
29 |
+
print('hooking', name)
|
30 |
+
module.register_forward_hook(hook_fn)
|
31 |
+
|
32 |
+
def get_attention_maps(self) -> OrderedDict:
|
33 |
+
return self.attention_maps
|
34 |
+
|
35 |
+
def get_attention_models() -> List[str]:
|
36 |
+
"""Get a list of timm models that have attention blocks."""
|
37 |
+
all_models = timm.list_models()
|
38 |
+
attention_models = [model for model in all_models if 'vit' in model.lower()] # Focusing on ViT models for simplicity
|
39 |
+
return attention_models
|
40 |
+
|
41 |
+
def load_model(model_name: str) -> Tuple[torch.nn.Module, AttentionExtractor]:
|
42 |
+
"""Load a model from timm and prepare it for attention extraction."""
|
43 |
+
timm.layers.set_fused_attn(False)
|
44 |
+
model = create_model(model_name, pretrained=True)
|
45 |
+
model.eval()
|
46 |
+
extractor = AttentionExtractor(model)
|
47 |
+
return model, extractor
|
48 |
+
|
49 |
+
def process_image(image: Image.Image, model: torch.nn.Module, extractor: AttentionExtractor) -> Dict[str, torch.Tensor]:
|
50 |
+
"""Process the input image and get the attention maps."""
|
51 |
+
# Get the correct transform for the model
|
52 |
+
config = model.pretrained_cfg
|
53 |
+
transform = create_transform(
|
54 |
+
input_size=config['input_size'],
|
55 |
+
crop_pct=config['crop_pct'],
|
56 |
+
mean=config['mean'],
|
57 |
+
std=config['std'],
|
58 |
+
interpolation=config['interpolation'],
|
59 |
+
is_training=False
|
60 |
+
)
|
61 |
+
|
62 |
+
|
63 |
+
# Preprocess the image
|
64 |
+
tensor = transform(image).unsqueeze(0)
|
65 |
+
|
66 |
+
# Forward pass
|
67 |
+
with torch.no_grad():
|
68 |
+
_ = model(tensor)
|
69 |
+
|
70 |
+
# Extract attention maps
|
71 |
+
attention_maps = extractor.get_attention_maps()
|
72 |
+
|
73 |
+
return attention_maps
|
74 |
+
|
75 |
+
def apply_mask(image: np.ndarray, mask: np.ndarray, color: Tuple[float, float, float], alpha: float = 0.5) -> np.ndarray:
|
76 |
+
# Ensure mask and image have the same shape
|
77 |
+
mask = mask[:, :, np.newaxis]
|
78 |
+
mask = np.repeat(mask, 3, axis=2)
|
79 |
+
|
80 |
+
# Convert color to numpy array
|
81 |
+
color = np.array(color)
|
82 |
+
|
83 |
+
# Apply mask
|
84 |
+
masked_image = image * (1 - alpha * mask) + alpha * mask * color[np.newaxis, np.newaxis, :] * 255
|
85 |
+
return masked_image.astype(np.uint8)
|
86 |
+
|
87 |
+
def visualize_attention(image: Image.Image, model_name: str) -> List[Image.Image]:
|
88 |
+
"""Visualize attention maps for the given image and model."""
|
89 |
+
model, extractor = load_model(model_name)
|
90 |
+
attention_maps = process_image(image, model, extractor)
|
91 |
+
|
92 |
+
# Convert PIL Image to numpy array
|
93 |
+
image_np = np.array(image)
|
94 |
+
|
95 |
+
# Create visualizations
|
96 |
+
visualizations = []
|
97 |
+
for layer_name, attn_map in attention_maps.items():
|
98 |
+
print(f"Attention map shape for {layer_name}: {attn_map.shape}")
|
99 |
+
|
100 |
+
# Remove the CLS token attention and average over heads
|
101 |
+
attn_map = attn_map[0, :, 0, 1:].mean(0) # Shape: (seq_len-1,)
|
102 |
+
|
103 |
+
# Reshape the attention map to 2D
|
104 |
+
num_patches = int(np.sqrt(attn_map.shape[0]))
|
105 |
+
attn_map = attn_map.reshape(num_patches, num_patches)
|
106 |
+
|
107 |
+
# Interpolate to match image size
|
108 |
+
attn_map = torch.tensor(attn_map).unsqueeze(0).unsqueeze(0)
|
109 |
+
attn_map = F.interpolate(attn_map, size=(image_np.shape[0], image_np.shape[1]), mode='bilinear', align_corners=False)
|
110 |
+
attn_map = attn_map.squeeze().cpu().numpy()
|
111 |
+
|
112 |
+
# Normalize attention map
|
113 |
+
attn_map = (attn_map - attn_map.min()) / (attn_map.max() - attn_map.min())
|
114 |
+
|
115 |
+
# Create visualization
|
116 |
+
fig, (ax1, ax2) = plt.subplots(1, 2, figsize=(20, 10))
|
117 |
+
|
118 |
+
# Original image
|
119 |
+
ax1.imshow(image_np)
|
120 |
+
ax1.set_title("Original Image")
|
121 |
+
ax1.axis('off')
|
122 |
+
|
123 |
+
# Attention map overlay
|
124 |
+
masked_image = apply_mask(image_np, attn_map, color=(1, 0, 0)) # Red mask
|
125 |
+
ax2.imshow(masked_image)
|
126 |
+
ax2.set_title(f'Attention Map for {layer_name}')
|
127 |
+
ax2.axis('off')
|
128 |
+
|
129 |
+
plt.tight_layout()
|
130 |
+
|
131 |
+
# Convert plot to image
|
132 |
+
fig.canvas.draw()
|
133 |
+
vis_image = Image.frombytes('RGB', fig.canvas.get_width_height(), fig.canvas.tostring_rgb())
|
134 |
+
visualizations.append(vis_image)
|
135 |
+
plt.close(fig)
|
136 |
+
|
137 |
+
return visualizations
|
138 |
+
|
139 |
+
# Create Gradio interface
|
140 |
+
iface = gr.Interface(
|
141 |
+
fn=visualize_attention,
|
142 |
+
inputs=[
|
143 |
+
gr.Image(type="pil", label="Input Image"),
|
144 |
+
gr.Dropdown(choices=get_attention_models(), label="Select Model")
|
145 |
+
],
|
146 |
+
outputs=gr.Gallery(label="Attention Maps"),
|
147 |
+
title="Attention Map Visualizer for timm Models",
|
148 |
+
description="Upload an image and select a timm model to visualize its attention maps."
|
149 |
+
)
|
150 |
+
|
151 |
+
iface.launch(debug=True)
|