Spaces:
Build error
Build error
import math, torch, gradio as gr | |
from lex_rank import LexRank | |
from lex_rank_distiluse_v1 import LexRankDistiluseV1 | |
from lex_rank_L12 import LexRankL12 | |
from sentence_transformers import SentenceTransformer, util | |
# ---===--- instances ---===--- | |
embedder = SentenceTransformer('paraphrase-multilingual-mpnet-base-v2') | |
lex = LexRank() | |
lex_distiluse_v1 = LexRankDistiluseV1() | |
lex_l12 = LexRankL12() | |
# 摘要方法1 | |
def extract_handler(content): | |
summary_length = math.ceil(len(content) / 10) | |
sentences = lex.find_central(content, num=summary_length) | |
output = "" | |
for index, sentence in enumerate(sentences): | |
output += f"{index}: {sentence}\n" | |
return output | |
# 摘要方法2 | |
def extract_handler_distiluse_v1(content): | |
summary_length = math.ceil(len(content) / 10) | |
sentences = lex_distiluse_v1.find_central(content, num=summary_length) | |
output = "" | |
for index, sentence in enumerate(sentences): | |
output += f"{index}: {sentence}\n" | |
return output | |
# 摘要方法3 | |
def extract_handler_l12(content): | |
summary_length = math.ceil(len(content) / 10) | |
sentences = lex_l12.find_central(content, num=summary_length) | |
output = "" | |
for index, sentence in enumerate(sentences): | |
output += f"{index}: {sentence}\n" | |
return output | |
# 相似度检测方法 | |
def similarity_search(queries, doc): | |
doc_list = doc.split('\n') | |
query_list = queries.split('\n') | |
corpus_embeddings = embedder.encode(doc_list, convert_to_tensor=True) | |
top_k = min(5, len(doc_list)) | |
output = "" | |
for query in query_list: | |
query_embedding = embedder.encode(query, convert_to_tensor=True) | |
# We use cosine-similarity and torch.topk to find the highest 5 scores | |
cos_scores = util.cos_sim(query_embedding, corpus_embeddings)[0] | |
top_results = torch.topk(cos_scores, k=top_k) | |
output += "\n\n======================\n\n" | |
output += f"Query: {query}" | |
output += "\nTop 5 most similar sentences in corpus:\n" | |
for score, idx in zip(top_results[0], top_results[1]): | |
output += f"{doc_list[idx]}(Score: {score})\n" | |
return output | |
# web ui | |
with gr.Blocks() as app: | |
gr.Markdown("从下面的标签选择测试模块 [摘要生成,相似度检测]") | |
with gr.Tab("LexRank-mpnet"): | |
text_input_1 = gr.Textbox(label="请输入长文本:", lines=10, max_lines=1000) | |
text_button_1 = gr.Button("生成摘要") | |
text_output_1 = gr.Textbox(label="摘要文本(长度设置为原文长度的1/10)", lines=10) | |
with gr.Tab("LexRank-distiluse"): | |
text_input_2 = gr.Textbox(label="请输入长文本:", lines=10, max_lines=1000) | |
text_button_2 = gr.Button("生成摘要") | |
text_output_2 = gr.Textbox(label="摘要文本(长度设置为原文长度的1/10)", lines=10) | |
with gr.Tab("LexRank-MiniLM-L12-v2"): | |
text_input_3 = gr.Textbox(label="请输入长文本:", lines=10, max_lines=1000) | |
text_button_3 = gr.Button("生成摘要") | |
text_output_3 = gr.Textbox(label="摘要文本(长度设置为原文长度的1/10)", lines=10) | |
with gr.Tab("相似度检测"): | |
with gr.Row(): | |
text_input_query = gr.Textbox(lines=10, label="查询文本") | |
text_input_doc = gr.Textbox(lines=20, label="逐行输入待比较的文本列表") | |
text_button_similarity = gr.Button("对比相似度") | |
text_output_similarity = gr.Textbox() | |
text_button_1.click(extract_handler, inputs=text_input_1, outputs=text_output_1) | |
text_button_2.click(extract_handler_distiluse_v1, inputs=text_input_2, outputs=text_output_2) | |
text_button_3.click(extract_handler_l12, inputs=text_input_3, outputs=text_output_3) | |
text_button_similarity.click(similarity_search, inputs=[text_input_query, text_input_doc], outputs=text_output_similarity) | |
app.launch( | |
# enable share will generate a temporary public link. | |
# share=True, | |
# debug=True, | |
# auth=("qee", "world"), | |
# auth_message="请登陆" | |
) | |