hellopahe
add cleaning process by GLMs.
4cc4d15
import torch, gradio as gr
from lex_rank import LexRank
from lex_rank_text2vec_v1 import LexRankText2VecV1
from lex_rank_L12 import LexRankL12
from sentence_transformers import SentenceTransformer, util
from ask_glm_4_help import GlmHelper
# ---===--- instances ---===---
embedder = SentenceTransformer('paraphrase-multilingual-mpnet-base-v2')
lex = LexRank()
lex_distiluse_v1 = LexRankText2VecV1()
lex_l12 = LexRankL12()
glm_helper = GlmHelper()
# 摘要方法1
def extract_handler(content, siblings, num):
if not siblings:
siblings = 0
if not num:
num = 10
siblings = int(siblings)
num = int(num)
glm_summarized_content = GlmHelper.clean_raw_content(content)
sentences = lex.find_central(glm_summarized_content, siblings=siblings, num=num)
output = f""">>>>>经过大模型清洗之后的文章为:\n{glm_summarized_content}\n\t>>>>>摘要为:\n"""
for index, sentence in enumerate(sentences):
output += f"{index}: {sentence}\n"
return output
# 摘要方法2
def extract_handler_distiluse_v1(content, siblings, num):
if not siblings:
siblings = 0
if not num:
num = 10
siblings = int(siblings)
num = int(num)
glm_summarized_content = GlmHelper.clean_raw_content(content)
sentences = lex.find_central(glm_summarized_content, siblings=siblings, num=num)
output = f""">>>>>经过大模型清洗之后的文章为:\n{glm_summarized_content}\n\t>>>>>摘要为:\n"""
for index, sentence in enumerate(sentences):
output += f"{index}: {sentence}\n"
return output
# 摘要方法3
def extract_handler_l12(content, siblings, num):
if not siblings:
siblings = 0
if not num:
num = 10
siblings = int(siblings)
num = int(num)
glm_summarized_content = GlmHelper.clean_raw_content(content)
sentences = lex.find_central(glm_summarized_content, siblings=siblings, num=num)
output = f""">>>>>经过大模型清洗之后的文章为:\n{glm_summarized_content}\n\t>>>>>摘要为:\n"""
for index, sentence in enumerate(sentences):
output += f"{index}: {sentence}\n"
return output
# 相似度检测方法
def similarity_search(queries, doc):
doc_list = doc.split('\n')
query_list = queries.split('\n')
corpus_embeddings = embedder.encode(doc_list, convert_to_tensor=True)
top_k = min(10, len(doc_list))
output = ""
for query in query_list:
query_embedding = embedder.encode(query, convert_to_tensor=True)
# We use cosine-similarity and torch.topk to find the highest 5 scores
cos_scores = util.cos_sim(query_embedding, corpus_embeddings)[0]
top_results = torch.topk(cos_scores, k=top_k)
output += "\n\n======================\n\n"
output += f"Query: {query}"
output += "\nTop 5 most similar sentences in corpus:\n"
for score, idx in zip(top_results[0], top_results[1]):
output += f"{doc_list[idx]}(Score: {score})\n"
return output
# web ui
with gr.Blocks() as app:
gr.Markdown("从下面的标签选择测试模块 [摘要生成,相似度检测]")
with gr.Tab("LexRank-mpnet"):
text_input_1 = gr.Textbox(label="请输入长文本:", lines=10, max_lines=1000)
with gr.Row():
text_button_1 = gr.Button("生成摘要")
siblings_input_1 = gr.Textbox(label="请输入摘要的宽度半径, 默认为0, 即显示摘要本身.")
num_input_1 = gr.Textbox(label="摘要的条数, 默认10条")
text_output_1 = gr.Textbox(label="摘要文本", lines=10)
with gr.Tab("shibing624/text2vec-base-chinese-paraphrase"):
text_input_2 = gr.Textbox(label="请输入长文本:", lines=10, max_lines=1000)
with gr.Row():
text_button_2 = gr.Button("生成摘要")
siblings_input_2 = gr.Textbox(label="请输入摘要的宽度半径, 默认为0, 即显示摘要本身.")
num_input_2 = gr.Textbox(label="摘要的条数, 默认10条")
text_output_2 = gr.Textbox(label="摘要文本", lines=10)
with gr.Tab("LexRank-MiniLM-L12-v2"):
text_input_3 = gr.Textbox(label="请输入长文本:", lines=10, max_lines=1000)
with gr.Row():
text_button_3 = gr.Button("生成摘要")
siblings_input_3 = gr.Textbox(label="请输入摘要的宽度半径, 默认为0, 即显示摘要本身.")
num_input_3 = gr.Textbox(label="摘要的条数, 默认10条")
text_output_3 = gr.Textbox(label="摘要文本", lines=10)
with gr.Tab("相似度检测"):
with gr.Row():
text_input_query = gr.Textbox(lines=10, label="查询文本")
text_input_doc = gr.Textbox(lines=20, label="逐行输入待比较的文本列表")
text_button_similarity = gr.Button("对比相似度")
text_output_similarity = gr.Textbox()
text_button_1.click(extract_handler, inputs=[text_input_1, siblings_input_1, num_input_1], outputs=text_output_1)
text_button_2.click(extract_handler_distiluse_v1, inputs=[text_input_2, siblings_input_2, num_input_2], outputs=text_output_2)
text_button_3.click(extract_handler_l12, inputs=[text_input_3, siblings_input_3, num_input_3], outputs=text_output_3)
text_button_similarity.click(similarity_search, inputs=[text_input_query, text_input_doc], outputs=text_output_similarity)
app.launch(
# enable share will generate a temporary public link.
# share=True,
# debug=True,
# auth=("qee", "world"),
# auth_message="请登陆"
)