File size: 5,570 Bytes
4cc4d15
e24946b
93e5f33
f1ae6c0
19d5657
e7699c1
4cc4d15
e0738a2
 
93e5f33
77129d5
e7699c1
f1ae6c0
19d5657
4cc4d15
1870c14
 
19d5657
f1ae6c0
d777f98
 
 
 
 
 
 
 
4cc4d15
 
 
 
bbf9596
 
 
e0738a2
1870c14
19d5657
f1ae6c0
d777f98
 
 
 
 
 
 
 
4cc4d15
 
 
 
19d5657
 
 
 
 
 
f1ae6c0
d777f98
 
 
 
 
 
 
 
4cc4d15
 
 
 
3611e07
 
 
 
 
93e5f33
77129d5
 
 
 
 
c215129
77129d5
 
 
 
 
 
 
 
7090141
77129d5
7090141
77129d5
 
 
93e5f33
1870c14
90f83ff
3611e07
77129d5
f1ae6c0
 
4d1745d
 
f1ae6c0
 
3611e07
f1ae6c0
 
4d1745d
4cc4d15
f1ae6c0
19d5657
 
f1ae6c0
 
4d1745d
 
f1ae6c0
1870c14
 
7090141
 
1870c14
 
 
f1ae6c0
 
 
77129d5
1870c14
e7699c1
93e5f33
5170bd0
93e5f33
e9377d8
 
e7699c1
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
import torch, gradio as gr

from lex_rank import LexRank
from lex_rank_text2vec_v1 import LexRankText2VecV1
from lex_rank_L12 import LexRankL12
from sentence_transformers import SentenceTransformer, util
from ask_glm_4_help import GlmHelper


# ---===--- instances ---===---
embedder = SentenceTransformer('paraphrase-multilingual-mpnet-base-v2')
lex = LexRank()
lex_distiluse_v1 = LexRankText2VecV1()
lex_l12 = LexRankL12()
glm_helper = GlmHelper()


# 摘要方法1
def extract_handler(content, siblings, num):
    if not siblings:
        siblings = 0
    if not num:
        num = 10

    siblings = int(siblings)
    num = int(num)

    glm_summarized_content = GlmHelper.clean_raw_content(content)

    sentences = lex.find_central(glm_summarized_content, siblings=siblings, num=num)
    output = f""">>>>>经过大模型清洗之后的文章为:\n{glm_summarized_content}\n\t>>>>>摘要为:\n"""
    for index, sentence in enumerate(sentences):
        output += f"{index}: {sentence}\n"
    return output


# 摘要方法2
def extract_handler_distiluse_v1(content, siblings, num):
    if not siblings:
        siblings = 0
    if not num:
        num = 10

    siblings = int(siblings)
    num = int(num)

    glm_summarized_content = GlmHelper.clean_raw_content(content)

    sentences = lex.find_central(glm_summarized_content, siblings=siblings, num=num)
    output = f""">>>>>经过大模型清洗之后的文章为:\n{glm_summarized_content}\n\t>>>>>摘要为:\n"""
    for index, sentence in enumerate(sentences):
        output += f"{index}: {sentence}\n"
    return output


# 摘要方法3
def extract_handler_l12(content, siblings, num):
    if not siblings:
        siblings = 0
    if not num:
        num = 10

    siblings = int(siblings)
    num = int(num)

    glm_summarized_content = GlmHelper.clean_raw_content(content)

    sentences = lex.find_central(glm_summarized_content, siblings=siblings, num=num)
    output = f""">>>>>经过大模型清洗之后的文章为:\n{glm_summarized_content}\n\t>>>>>摘要为:\n"""
    for index, sentence in enumerate(sentences):
        output += f"{index}: {sentence}\n"
    return output


# 相似度检测方法
def similarity_search(queries, doc):
    doc_list = doc.split('\n')
    query_list = queries.split('\n')

    corpus_embeddings = embedder.encode(doc_list, convert_to_tensor=True)
    top_k = min(10, len(doc_list))
    output = ""
    for query in query_list:
        query_embedding = embedder.encode(query, convert_to_tensor=True)
        # We use cosine-similarity and torch.topk to find the highest 5 scores
        cos_scores = util.cos_sim(query_embedding, corpus_embeddings)[0]
        top_results = torch.topk(cos_scores, k=top_k)
        output += "\n\n======================\n\n"
        output += f"Query: {query}"
        output += "\nTop 5 most similar sentences in corpus:\n"
        for score, idx in zip(top_results[0], top_results[1]):
            output += f"{doc_list[idx]}(Score: {score})\n"
    return output


#  web ui
with gr.Blocks() as app:
    gr.Markdown("从下面的标签选择测试模块 [摘要生成,相似度检测]")
    with gr.Tab("LexRank-mpnet"):
        text_input_1 = gr.Textbox(label="请输入长文本:", lines=10, max_lines=1000)
        with gr.Row():
            text_button_1 = gr.Button("生成摘要")
            siblings_input_1 = gr.Textbox(label="请输入摘要的宽度半径, 默认为0, 即显示摘要本身.")
            num_input_1 = gr.Textbox(label="摘要的条数, 默认10条")
        text_output_1 = gr.Textbox(label="摘要文本", lines=10)
    with gr.Tab("shibing624/text2vec-base-chinese-paraphrase"):
        text_input_2 = gr.Textbox(label="请输入长文本:", lines=10, max_lines=1000)
        with gr.Row():
            text_button_2 = gr.Button("生成摘要")
            siblings_input_2 = gr.Textbox(label="请输入摘要的宽度半径, 默认为0, 即显示摘要本身.")
            num_input_2 = gr.Textbox(label="摘要的条数, 默认10条")
        text_output_2 = gr.Textbox(label="摘要文本", lines=10)
    with gr.Tab("LexRank-MiniLM-L12-v2"):
        text_input_3 = gr.Textbox(label="请输入长文本:", lines=10, max_lines=1000)
        with gr.Row():
            text_button_3 = gr.Button("生成摘要")
            siblings_input_3 = gr.Textbox(label="请输入摘要的宽度半径, 默认为0, 即显示摘要本身.")
            num_input_3 = gr.Textbox(label="摘要的条数, 默认10条")
        text_output_3 = gr.Textbox(label="摘要文本", lines=10)
    with gr.Tab("相似度检测"):
        with gr.Row():
            text_input_query = gr.Textbox(lines=10, label="查询文本")
            text_input_doc = gr.Textbox(lines=20, label="逐行输入待比较的文本列表")
        text_button_similarity = gr.Button("对比相似度")
        text_output_similarity = gr.Textbox()

    text_button_1.click(extract_handler, inputs=[text_input_1, siblings_input_1, num_input_1], outputs=text_output_1)
    text_button_2.click(extract_handler_distiluse_v1, inputs=[text_input_2, siblings_input_2, num_input_2], outputs=text_output_2)
    text_button_3.click(extract_handler_l12, inputs=[text_input_3, siblings_input_3, num_input_3], outputs=text_output_3)
    text_button_similarity.click(similarity_search, inputs=[text_input_query, text_input_doc], outputs=text_output_similarity)

app.launch(
    # enable share will generate a temporary public link.
    # share=True,
    # debug=True,
    # auth=("qee", "world"),
    # auth_message="请登陆"
           )