File size: 5,365 Bytes
7235a64
 
 
1f125f1
7235a64
 
1f125f1
7235a64
 
 
1f125f1
 
 
 
cc8b2eb
1f125f1
 
 
 
 
 
ee83d59
7235a64
1f125f1
ee83d59
7235a64
 
 
 
 
cc8b2eb
7235a64
 
 
 
 
 
ee83d59
7235a64
ee83d59
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
7235a64
 
 
1f125f1
 
 
 
 
 
7235a64
1f125f1
7235a64
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1f125f1
 
 
 
7235a64
 
1f125f1
cc8b2eb
1f125f1
 
 
 
 
 
 
 
 
 
 
 
 
 
 
ee83d59
7235a64
 
1f125f1
 
 
 
 
ee83d59
 
 
 
 
 
 
 
 
 
 
 
7235a64
 
 
 
 
 
1f125f1
 
 
 
7235a64
1f125f1
 
 
 
 
 
 
 
 
7235a64
 
 
 
 
 
8d94857
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
import torch
import gradio as gr

from model_factory import ModelFactory
from stegno import generate, decrypt
from seed_scheme_factory import SeedSchemeFactory
from global_config import GlobalConfig


def enc_fn(
    gen_model: str,
    prompt: str,
    msg: str,
    start_pos: int,
    delta: float,
    msg_base: int,
    seed_scheme: str,
    window_length: int,
    private_key: int,
    max_new_tokens_ratio: float,
    num_beams: int,
    repetition_penalty: float,
):
    model, tokenizer = ModelFactory.load_model(gen_model)
    text, msg_rate, tokens_info = generate(
        tokenizer=tokenizer,
        model=model,
        prompt=prompt,
        msg=str.encode(msg),
        start_pos_p=[start_pos],
        delta=delta,
        msg_base=msg_base,
        seed_scheme=seed_scheme,
        window_length=window_length,
        private_key=private_key,
        max_new_tokens_ratio=max_new_tokens_ratio,
        num_beams=num_beams,
        repetition_penalty=repetition_penalty,
    )
    highlight_base = []
    for token in tokens_info:
        stat = None
        if token["base_msg"] != -1:
            if token["base_msg"] == token["base_enc"]:
                stat = "correct"
            else:
                stat = "wrong"
        highlight_base.append((repr(token["token"])[1:-1], stat))

    highlight_byte = []
    for i, token in enumerate(tokens_info):
        if i == 0 or tokens_info[i - 1]["byte_id"] != token["byte_id"]:
            stat = None
            if token["byte_msg"] != -1:
                if token["byte_msg"] == token["byte_enc"]:
                    stat = "correct"
                else:
                    stat = "wrong"
            highlight_byte.append([repr(token["token"])[1:-1], stat])
        else:
            highlight_byte[-1][0] += repr(token["token"])[1:-1]

    return text, highlight_base, highlight_byte, round(msg_rate * 100, 2)


def dec_fn(
    gen_model: str,
    text: str,
    msg_base: int,
    seed_scheme: str,
    window_length: int,
    private_key: int,
):
    model, tokenizer = ModelFactory.load_model(gen_model)
    msgs = decrypt(
        tokenizer=tokenizer,
        device=model.device,
        text=text,
        msg_base=msg_base,
        seed_scheme=seed_scheme,
        window_length=window_length,
        private_key=private_key,
    )
    msg_text = ""
    for i, msg in enumerate(msgs):
        msg_text += f"Shift {i}: {msg}\n\n"
    return msg_text


if __name__ == "__main__":
    enc = gr.Interface(
        fn=enc_fn,
        inputs=[
            gr.Dropdown(
                value=GlobalConfig.get("encrypt.default", "gen_model"),
                choices=ModelFactory.get_models_names(),
            ),
            gr.Textbox(),
            gr.Textbox(),
            gr.Number(int(GlobalConfig.get("encrypt.default", "start_pos"))),
            gr.Number(float(GlobalConfig.get("encrypt.default", "delta"))),
            gr.Number(int(GlobalConfig.get("encrypt.default", "msg_base"))),
            gr.Dropdown(
                value=GlobalConfig.get("encrypt.default", "seed_scheme"),
                choices=SeedSchemeFactory.get_schemes_name(),
            ),
            gr.Number(
                int(GlobalConfig.get("encrypt.default", "window_length"))
            ),
            gr.Number(int(GlobalConfig.get("encrypt.default", "private_key"))),
            gr.Number(
                float(
                    GlobalConfig.get("encrypt.default", "max_new_tokens_ratio")
                )
            ),
            gr.Number(int(GlobalConfig.get("encrypt.default", "num_beams"))),
            gr.Number(float(GlobalConfig.get("encrypt.default", "repetition_penalty"))),
        ],
        outputs=[
            gr.Textbox(
                label="Text containing message",
                show_label=True,
                show_copy_button=True,
            ),
            gr.HighlightedText(
                label="Text containing message (Base highlighted)",
                combine_adjacent=False,
                show_legend=True,
                color_map={"correct": "green", "wrong": "red"},
            ),
            gr.HighlightedText(
                label="Text containing message (Byte highlighted)",
                combine_adjacent=False,
                show_legend=True,
                color_map={"correct": "green", "wrong": "red"},
            ),
            gr.Number(label="Percentage of message in text", show_label=True),
        ],
    )
    dec = gr.Interface(
        fn=dec_fn,
        inputs=[
            gr.Dropdown(
                value=GlobalConfig.get("decrypt.default", "gen_model"),
                choices=ModelFactory.get_models_names(),
            ),
            gr.Textbox(),
            gr.Number(int(GlobalConfig.get("decrypt.default", "msg_base"))),
            gr.Dropdown(
                value=GlobalConfig.get("decrypt.default", "seed_scheme"),
                choices=SeedSchemeFactory.get_schemes_name(),
            ),
            gr.Number(
                int(GlobalConfig.get("decrypt.default", "window_length"))
            ),
            gr.Number(int(GlobalConfig.get("decrypt.default", "private_key"))),
        ],
        outputs=[
            gr.Textbox(label="Message", show_label=True),
        ],
    )
    app = gr.TabbedInterface([enc, dec], ["Encrytion", "Decryption"])
    app.launch(share=True)