File size: 5,361 Bytes
9d55eb4
a9e7d31
5d26322
a9e7d31
ff6dd35
9d55eb4
 
1fb2014
b7f7d63
9d55eb4
a9e7d31
 
 
 
 
 
 
 
ff6dd35
 
 
 
a9e7d31
9d55eb4
b7f7d63
9d55eb4
 
a9e7d31
da700a9
a9e7d31
9d55eb4
ff6dd35
 
 
 
 
 
a9e7d31
9d55eb4
9f1411e
da700a9
 
 
a9e7d31
b7f7d63
a9e7d31
 
9d55eb4
b0042a5
b7f7d63
 
 
f548568
b7f7d63
 
 
 
 
a9e7d31
 
 
9d55eb4
 
a9e7d31
b7f7d63
 
 
9d55eb4
a9e7d31
 
 
 
ff6dd35
 
da700a9
30dcff9
ff6dd35
a9e7d31
 
 
97f74a7
 
 
 
 
 
dadd4bc
a9e7d31
 
5d26322
 
ff6dd35
 
 
5d26322
ff6dd35
a9e7d31
 
 
 
6e3d5eb
aeb451a
 
 
a9e7d31
97f74a7
 
 
 
 
 
 
a9e7d31
 
 
 
30dcff9
b33cc95
aeb451a
a9e7d31
 
6e3d5eb
a9e7d31
 
 
27c60ec
a9e7d31
 
da700a9
a9e7d31
 
 
 
6e3d5eb
da700a9
a9e7d31
 
 
 
da700a9
a9e7d31
b0042a5
 
da700a9
b0042a5
 
 
a9e7d31
b0042a5
a9e7d31
 
b0042a5
 
a9e7d31
f15167a
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
import json
import os

import gradio as gr
from huggingface_hub import Repository
from text_generation import Client

HF_TOKEN = os.environ.get("TRL_TOKEN", None)
API_URL = os.environ.get("API_URL")


theme = gr.themes.Monochrome(
    primary_hue="indigo",
    secondary_hue="blue",
    neutral_hue="slate",
    radius_size=gr.themes.sizes.radius_sm,
    font=[gr.themes.GoogleFont("Open Sans"), "ui-sans-serif", "system-ui", "sans-serif"],
)
if HF_TOKEN:
    repo = Repository(
        local_dir="data", clone_from="trl-lib/stack-llama-prompts", use_auth_token=HF_TOKEN, repo_type="dataset"
    )

client = Client(
    API_URL,
    headers={"Authorization": f"Bearer {HF_TOKEN}"},
)

PROMPT_TEMPLATE = """Question: {prompt}\n\nAnswer:"""


def save_inputs_and_outputs(inputs, outputs, generate_kwargs):
    with open(os.path.join("data", "prompts.jsonl"), "a") as f:
        json.dump({"inputs": inputs, "outputs": outputs, "generate_kwargs": generate_kwargs}, f, ensure_ascii=False)
        f.write("\n")
        commit_url = repo.push_to_hub()


def generate(instruction, temperature=0.9, max_new_tokens=256, top_p=0.95, top_k=100):
    formatted_instruction = PROMPT_TEMPLATE.format(prompt=instruction)

    temperature = float(temperature)
    top_p = float(top_p)

    generate_kwargs = dict(
        temperature=temperature,
        max_new_tokens=max_new_tokens,
        top_p=top_p,
        top_k=top_k,
        do_sample=True,
        truncate=999,
        seed=42,
        stop_sequences=["</s>"],
    )

    stream = client.generate_stream(
        formatted_instruction,
        **generate_kwargs,
    )

    output = ""
    for response in stream:
        output += response.token.text
        yield output
    if HF_TOKEN:
        print("Pushing prompt and completion to the Hub")
        save_inputs_and_outputs(formatted_instruction, output, generate_kwargs)

    return output


examples = [
    "A llama is in my lawn. How do I get rid of him?",
    "How do I create an array in C++ which contains all even numbers between 1 and 10?",
    "How can I sort a list in Python?",
    "How can I write a Java function to generate the nth Fibonacci number?",
    "How many helicopters can a llama eat in one sitting?",
]


def process_example(args):
    for x in generate(args):
        pass
    return x


with gr.Blocks(theme=theme, analytics_enabled=False, css=".generating {visibility: hidden}") as demo:
    with gr.Column():
        gr.Markdown(
            """<h1><center>🦙🦙🦙 StackLLaMa 🦙🦙🦙</center></h1>

            StackLLaMa is a 7 billion parameter language model that has been trained on pairs of questions and answers from [Stack Exchange](https://stackexchange.com) using Reinforcement Learning from Human Feedback with the [TRL library](https://github.com/lvwerra/trl). For more details, check out our [blog post](https://huggingface.co/blog/stackllama).

            Type in the box below and click the button to generate answers to your most pressing questions 🔥!

            **Note:** we are collecting your prompts and model completions for research purposes.
      """
        )
        with gr.Row():
            with gr.Column(scale=3):
                instruction = gr.Textbox(placeholder="Enter your question here", label="Question")
                with gr.Box():
                    gr.Markdown("**Answer**")
                    output = gr.Markdown()
                submit = gr.Button("Generate", variant="primary")
                gr.Examples(
                    examples=examples,
                    inputs=[instruction],
                    cache_examples=True,
                    fn=process_example,
                    outputs=[output],
                )

            with gr.Column(scale=1):
                temperature = gr.Slider(
                    label="Temperature",
                    value=0.8,
                    minimum=0.01,
                    maximum=2.0,
                    step=0.1,
                    interactive=True,
                    info="Higher values produce more diverse outputs",
                )
                max_new_tokens = gr.Slider(
                    label="Max new tokens",
                    value=256,
                    minimum=0,
                    maximum=2048,
                    step=4,
                    interactive=True,
                    info="The maximum numbers of new tokens",
                )
                top_p = gr.Slider(
                    label="Top-p (nucleus sampling)",
                    value=0.95,
                    minimum=0.0,
                    maximum=1,
                    step=0.05,
                    interactive=True,
                    info="Higher values sample more low-probability tokens",
                )
                top_k = gr.Slider(
                    label="Top-k",
                    value=40,
                    minimum=0,
                    maximum=100,
                    step=2,
                    interactive=True,
                    info="Sample from top-k tokens",
                )

    submit.click(generate, inputs=[instruction, temperature, max_new_tokens, top_p, top_k], outputs=[output])
    instruction.submit(generate, inputs=[instruction, temperature, max_new_tokens, top_p, top_k], outputs=[output])

demo.queue(concurrency_count=16).launch(debug=True)