File size: 3,590 Bytes
e932fdf
c38bbc6
e932fdf
 
c38bbc6
 
 
 
 
e932fdf
0164e97
 
 
 
e932fdf
c38bbc6
e932fdf
0164e97
e932fdf
 
0164e97
e932fdf
 
c38bbc6
3f2b399
e932fdf
 
 
3f2b399
c38bbc6
e932fdf
3f2b399
e932fdf
 
 
0164e97
c38bbc6
 
 
e932fdf
c38bbc6
e932fdf
 
0164e97
c38bbc6
 
 
e932fdf
c38bbc6
 
 
 
0164e97
c38bbc6
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
0164e97
c38bbc6
 
 
 
0164e97
c38bbc6
e932fdf
 
0164e97
c38bbc6
e932fdf
 
0164e97
e932fdf
 
 
 
c38bbc6
 
e932fdf
 
 
 
c38bbc6
0164e97
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
import gradio as gr
import fitz  # PyMuPDF for reading PDFs
import numpy as np
from bokeh.plotting import figure, output_file, save
from bokeh.models import HoverTool, ColumnDataSource
import umap
import pandas as pd
from sklearn.metrics.pairwise import cosine_similarity, euclidean_distances
from sentence_transformers import SentenceTransformer
import tempfile
import logging

# Set up logging
logging.basicConfig(level=logging.INFO, format='%(asctime)s - %(levelname)s - %(message)s')

# Initialize the model globally
model = SentenceTransformer('all-MiniLM-L6-v2')
logging.info("Model loaded successfully.")

def process_pdf(pdf_path):
    logging.info(f"Processing PDF: {pdf_path}")
    # Open the PDF
    doc = fitz.open(pdf_path)
    texts = [page.get_text() for page in doc]
    print("PDF processed successfully.")
    return " ".join(texts)

def create_embeddings(text):
    print("Creating embeddings.")
    sentences = text.split(". ")  # A simple split; consider a more robust sentence splitter
    embeddings = model.encode(sentences)
    print("Embeddings created successfully.")
    return embeddings, sentences

def generate_plot(query, pdf_file):
    logging.info("Generating plot.")
    # Generate embeddings for the query
    query_embedding = model.encode([query])[0]
    
    # Process the PDF and create embeddings
    text = process_pdf(pdf_file.name)
    embeddings, sentences = create_embeddings(text)
    
    logging.info("Data prepared for UMAP.")
    # Prepare the data for UMAP and visualization
    all_embeddings = np.vstack([embeddings, query_embedding])
    all_sentences = sentences + [query]
    
    # UMAP transformation
    umap_transform = umap.UMAP(n_neighbors=15, min_dist=0.0, n_components=2, random_state=42)
    umap_embeddings = umap_transform.fit_transform(all_embeddings)
    
    logging.info("UMAP transformation completed.")
    # Find the closest sentences to the query
    distances = cosine_similarity([query_embedding], embeddings)[0]
    closest_indices = distances.argsort()[-5:][::-1]  # Adjust the number as needed
    
    # Prepare data for plotting
    data = {
        'x': umap_embeddings[:-1, 0],  # Exclude the query point itself
        'y': umap_embeddings[:-1, 1],  # Exclude the query point itself
        'content': all_sentences[:-1],  # Exclude the query sentence itself
        'color': ['red' if i in closest_indices else 'blue' for i in range(len(sentences))],
    }
    source = ColumnDataSource(data)
    
    # Create the Bokeh plot
    p = figure(title="UMAP Projection of Sentences", width=700, height=700)
    p.scatter('x', 'y', color='color', source=source)
    
    hover = HoverTool(tooltips=[("Content", "@content")])
    p.add_tools(hover)
    
    logging.info("Plot created successfully.")
    # Save the plot to an HTML file
    temp_file = tempfile.NamedTemporaryFile(delete=False, suffix=".html")
    output_file(temp_file.name)
    save(p)
    logging.info("Plot saved to file.")
    return temp_file.name

def gradio_interface(pdf_file, query):
    logging.info("Gradio interface called.")
    plot_path = generate_plot(query, pdf_file)
    with open(plot_path, "r") as f:
        html_content = f.read()
    logging.info("Returning HTML content.")
    return html_content

iface = gr.Interface(
    fn=gradio_interface,
    inputs=[gr.File(label="Upload PDF"), gr.Textbox(label="Query")],
    outputs=gr.HTML(label="Visualization"),
    title="PDF Content Visualizer",
    description="Upload a PDF and enter a query to visualize the content."
)

if __name__ == "__main__":
    iface.launch()