Spaces:
Sleeping
Sleeping
File size: 1,149 Bytes
ca2c26d |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 |
from fastapi import FastAPI
from pydantic import BaseModel
from transformers import GPT2Tokenizer, GPT2Model
from langchain.prompts import PromptTemplate
app = FastAPI()
tokenizer = GPT2Tokenizer.from_pretrained('gpt2')
model = GPT2Model.from_pretrained('gpt2')
class TextRequest(BaseModel):
text: str
def preprocess_text(text: str):
return text.lower()
def classify_text(question: str):
prompt_template = PromptTemplate(template="Answer the following question and classify it: {question}", input_variables = ["question"], output_variables=["answer", "classification"])
# Model loading
format_prompt = prompt_template.format(question=question)
encoded_input = tokenizer(format_prompt, return_tensors='pt')
output = model(encoded_input)
# chain = LLMChain(llm=llm, prompt=prompt_template, verbose=True)
# response = chain({"question": question})
return output
@app.post("/classify")
async def classify_text_endpoint(request: TextRequest):
preprocessed_text = preprocess_text(request.text)
response = classify_text(preprocessed_text)
answer = response['text']
return {"answer": answer} |