Spaces:
Sleeping
Sleeping
from omegaconf import OmegaConf | |
import streamlit as st | |
import os | |
from PIL import Image | |
import re | |
import sys | |
import datetime | |
from pydantic import Field, BaseModel | |
from vectara_agent.agent import Agent, AgentType, AgentStatusType | |
from vectara_agent.tools import ToolsFactory | |
from vectara_agent.tools_catalog import rephrase_text | |
teaching_styles = ['traditional', 'Inquiry-based', 'Socratic'] | |
languages = {'English': 'en', 'Spanish': 'es', 'French': 'fr', 'German': 'de', 'Arabic': 'ar', 'Chinese': 'zh-cn', | |
'Hebrew': 'he', 'Hindi': 'hi', 'Italian': 'it', 'Japanese': 'ja', 'Korean': 'ko', 'Portuguese': 'pt'} | |
initial_prompt = "How can I help you today?" | |
def create_tools(cfg): | |
def adjust_response_to_student( | |
text: str = Field(description='the original text.'), | |
age: int = Field(description='the age of the student. An integer'), | |
style: str = Field(description='teaching style'), | |
language: str = Field(description='the language') | |
) -> str: | |
""" | |
Rephrase the text to match the student's age, desired teaching style and language | |
""" | |
instructions = f''' | |
The following is response the teacher is planning to provide to a student based on their question. | |
Please adjust the response to match the student's age of {age}, the {style} teaching style. | |
For example, in the inquiry-based teaching style, choose to ask questions that encourage the student to think critically instead of repsonding directly with the answer. | |
Or in the socratic teaching style, choose to ask questions that lead the student to the answer. | |
Always respond in the {language} language.''' \ | |
.replace("{style}", cfg.style) \ | |
.replace("{language}", cfg.language) \ | |
.replace("{student_age}", str(cfg.student_age)) | |
return rephrase_text(text, instructions) | |
class JusticeHarvardArgs(BaseModel): | |
query: str = Field(..., description="The user query.") | |
tools_factory = ToolsFactory(vectara_api_key=cfg.api_key, | |
vectara_customer_id=cfg.customer_id, | |
vectara_corpus_id=cfg.corpus_id) | |
query_tool = tools_factory.create_rag_tool( | |
tool_name = "justice_harvard_query", | |
tool_description = """ | |
Given a user query, returns a response (str) based on the content of the Justice Harvard lecture transcripts. | |
It can answer questions about the justice, morality, politics and related topics, | |
based on transcripts of recordings from the Justice Harvard class that includes a lot of content on these topics. | |
When using the tool it's best to ask simple short questions. You can break complex questions into sub-queries. | |
""", | |
tool_args_schema = JusticeHarvardArgs, | |
tool_filter_template = '', | |
reranker = "multilingual_reranker_v1", rerank_k = 100, | |
n_sentences_before = 2, n_sentences_after = 2, lambda_val = 0.01, | |
summary_num_results = 10, | |
vectara_summarizer = 'vectara-summary-ext-24-05-med-omni', | |
) | |
return (tools_factory.get_tools( | |
[ | |
adjust_response_to_student, | |
] | |
) + | |
tools_factory.standard_tools() + | |
tools_factory.guardrail_tools() + | |
[query_tool] | |
) | |
def initialize_agent(agent_type: AgentType, _cfg): | |
date = datetime.datetime.now().strftime("%Y-%m-%d") | |
bot_instructions = f""" | |
- You are a helpful teacher assistant, with expertise in education in various teaching styles. | |
- Today's date is {date}. | |
- Response in a concise and clear manner, and provide the most relevant information to the student. | |
- Use tools when available instead of depending on your own knowledge. | |
""" | |
def update_func(status_type: AgentStatusType, msg: str): | |
output = f"{status_type.value} - {msg}" | |
st.session_state.thinking_placeholder.text(output) | |
agent = Agent( | |
agent_type=agent_type, | |
tools=create_tools(_cfg), | |
topic="An educator with expertise in philosophy", | |
custom_instructions=bot_instructions, | |
update_func=update_func | |
) | |
return agent | |
def launch_bot(agent_type: AgentType): | |
def reset(): | |
cfg = st.session_state.cfg | |
st.session_state.messages = [{"role": "assistant", "content": initial_prompt, "avatar": "π¦"}] | |
st.session_state.thinking_message = "Agent at work..." | |
st.session_state.agent = initialize_agent(agent_type, cfg) | |
st.set_page_config(page_title="Justice Harvard Teaching Assistant", layout="wide") | |
if 'cfg' not in st.session_state: | |
cfg = OmegaConf.create({ | |
'customer_id': str(os.environ['VECTARA_CUSTOMER_ID']), | |
'corpus_id': str(os.environ['VECTARA_CORPUS_ID']), | |
'api_key': str(os.environ['VECTARA_API_KEY']), | |
'style': teaching_styles[0], | |
'language': 'English', | |
'student_age': 18 | |
}) | |
st.session_state.cfg = cfg | |
st.session_state.style = cfg.style | |
st.session_state.language = cfg.language | |
st.session_state.student_age = cfg.student_age | |
reset() | |
cfg = st.session_state.cfg | |
# left side content | |
with st.sidebar: | |
image = Image.open('Vectara-logo.png') | |
st.image(image, width=250) | |
st.markdown("## Welcome to the Justice Harvard e-learning assistant demo.\n\n\n") | |
st.markdown("\n") | |
cfg.style = st.selectbox('Teacher Style:', teaching_styles) | |
if st.session_state.style != cfg.style: | |
st.session_state.style = cfg.style | |
reset() | |
st.markdown("\n") | |
cfg.language = st.selectbox('Language:', languages.keys()) | |
if st.session_state.language != cfg.language: | |
st.session_state.langage = cfg.language | |
reset() | |
st.markdown("\n") | |
cfg.student_age = st.number_input( | |
'Student age:', min_value=13, value=cfg.student_age, | |
step=1, format='%i' | |
) | |
if st.session_state.student_age != cfg.student_age: | |
st.session_state.student_age = cfg.student_age | |
reset() | |
st.markdown("\n\n") | |
if st.button('Start Over'): | |
reset() | |
st.markdown("---") | |
st.markdown( | |
"## How this works?\n" | |
"This app was built with [Vectara](https://vectara.com).\n\n" | |
"It demonstrates the use of Agentic Chat functionality with Vectara" | |
) | |
st.markdown("---") | |
if "messages" not in st.session_state.keys(): | |
reset() | |
# Display chat messages | |
for message in st.session_state.messages: | |
with st.chat_message(message["role"], avatar=message["avatar"]): | |
st.write(message["content"]) | |
# User-provided prompt | |
if prompt := st.chat_input(): | |
st.session_state.messages.append({"role": "user", "content": prompt, "avatar": 'π§βπ»'}) | |
with st.chat_message("user", avatar='π§βπ»'): | |
print(f"Starting new question: {prompt}\n") | |
st.write(prompt) | |
if st.session_state.messages[-1]["role"] != "assistant": | |
with st.chat_message("assistant", avatar='π€'): | |
with st.spinner(st.session_state.thinking_message): | |
st.session_state.thinking_placeholder = st.empty() | |
res = st.session_state.agent.chat(prompt) | |
cleaned = re.sub(r'\[\d+\]', '', res).replace('$', '\\$') | |
message = {"role": "assistant", "content": cleaned, "avatar": 'π€'} | |
st.session_state.messages.append(message) | |
st.session_state.thinking_placeholder.empty() | |
st.rerun() | |
sys.stdout.flush() | |
if __name__ == "__main__": | |
launch_bot(agent_type=AgentType.OPENAI) | |