Spaces:
Running
on
Zero
Running
on
Zero
File size: 8,836 Bytes
4ffe832 59c3dd8 ef187eb 3cf95dc 4ffe832 63b6eaf 4ffe832 eb7c9df 4b68e4e 11fa80e d9aab39 8b1e96d 4ffe832 5805e23 3cf95dc 3599676 ec35e66 4efab5c ec35e66 4efab5c 2845193 0756ffd 4eadc27 4ffe832 9cdf1dd 4ffe832 9cdf1dd 4ffe832 4666868 4ffe832 4666868 92f9e1d 4ffe832 4666868 4ffe832 aac97b8 ee458f2 a9ed6dc 165f5d8 4ffe832 f4bcd5c 165f5d8 4ffe832 aac97b8 14ce716 aac97b8 165f5d8 aac97b8 9f5b615 4666868 14ce716 165f5d8 9f5b615 8b1e96d f286ae5 a434ddd 4ffe832 a9ed6dc 4ffe832 b9797ba 4ffe832 e66f6d6 3cf95dc d94350f 79f7937 11fa80e a9ed6dc d06d30a 4eadc27 d06d30a 4ffe832 a9ed6dc 4ffe832 0cffd40 4ffe832 8b3ca8d 4ffe832 fda59ae 5805e23 8b3ca8d 0cffd40 8b1e96d 0cffd40 4ffe832 aac97b8 db04c05 30d5dc3 4ffe832 470a85b 4ffe832 44ee61c db04c05 4ffe832 db04c05 4ffe832 db04c05 4ffe832 db04c05 4ffe832 db04c05 4ffe832 db04c05 4ffe832 c06e644 4ffe832 5805e23 4ffe832 165f5d8 4ffe832 5805e23 4ffe832 5805e23 4ffe832 8b3ca8d 4ffe832 4b5a4e3 8b3ca8d 8b1e96d a9ed6dc 4ffe832 a9ed6dc 4ffe832 8b1e96d |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 |
import spaces
import os
import gradio as gr
import torch
import numpy as np
import random
from diffusers import FluxPipeline
from translatepy import Translator
from huggingface_hub import hf_hub_download
import requests
import re
os.environ["HF_HUB_ENABLE_HF_TRANSFER"] = "1"
translator = Translator()
HF_TOKEN = os.environ.get("HF_TOKEN", None)
# Constants
model = "black-forest-labs/FLUX.1-dev"
default_lora = "Shakker-Labs/FilmPortrait"
default_weight_name = 'filmfotos.safetensors'
MAX_SEED = np.iinfo(np.int32).max
CSS = """
footer {
visibility: hidden;
}
"""
JS = """function () {
gradioURL = window.location.href
if (!gradioURL.endsWith('?__theme=dark')) {
window.location.replace(gradioURL + '?__theme=dark');
}
}"""
if torch.cuda.is_available():
device = "cuda"
print("Using GPU")
else:
device = "cpu"
print("Using CPU")
pipe = FluxPipeline.from_pretrained(model, torch_dtype=torch.bfloat16).to(device)
pipe.load_lora_weights(default_lora, weight_name = default_weight_name) # default load lora
def scrape_lora_link(url):
try:
# Send a GET request to the URL
response = requests.get(url)
response.raise_for_status() # Raise an exception for bad status codes
# Get the content of the page
content = response.text
# Use regular expression to find the link
pattern = r'href="(.*?lora.*?\.safetensors\?download=true)"'
pattern2 = r'href="(.*?\.safetensors\?download=true)"'
match = re.search(pattern, content)
match2 = re.search(pattern2, content)
if match:
safetensors_url = match.group(1)
filename = safetensors_url.split('/')[-1].split('?')[0] # Extract the filename from the URL
return filename
elif match2:
safetensors_url = match2.group(1)
filename = safetensors_url.split('/')[-1].split('?')[0]
return filename
else:
return None
except requests.RequestException as e:
raise gr.Error(f"An error occurred while fetching the URL: {e}")
def enable_lora(lora_add,progress=gr.Progress(track_tqdm=True)):
pipe.unload_lora_weights()
if not lora_add:
gr.Info("No Lora Loaded, Use basemodel")
return gr.update(value="")
else:
url = f'https://huggingface.co/{lora_add}/tree/main'
lora_name = scrape_lora_link(url)
if lora_name:
print(f'lora loading: {lora_add}/{lora_name}')
pipe.load_lora_weights(lora_add, weight_name=lora_name)
gr.Info(f"{lora_add} Loaded")
return gr.update(label="LoRA Loaded Now")
else:
try:
pipe.load_lora_weights(lora_add)
print(f'lora loading: {lora_add}')
gr.Info(f"{lora_add} Loaded")
return gr.update(label="LoRA Loaded Now")
except:
raise gr.Error(f"{lora_add} Load fail, check again.")
@spaces.GPU()
def generate_image(
prompt:str,
lora_word:str,
lora_scale:float=0.0,
width:int=768,
height:int=1024,
scales:float=3.5,
steps:int=24,
seed:int=-1,
nums:int=1,
progress=gr.Progress(track_tqdm=True)):
pipe.to("cuda")
if seed == -1:
seed = random.randint(0, MAX_SEED)
seed = int(seed)
prompt = str(translator.translate(prompt, 'English'))
text = f"{prompt} {lora_word}"
print(f"Prompt: {text}")
generator = torch.Generator().manual_seed(seed)
image = pipe(
prompt=text,
height=height,
width=width,
guidance_scale=scales,
output_type="pil",
num_inference_steps=steps,
max_sequence_length=512,
num_images_per_prompt=nums,
generator=generator,
joint_attention_kwargs={"scale": lora_scale},
).images
return image, seed
examples = [
["close up portrait, Amidst the interplay of light and shadows in a photography studio,a soft spotlight traces the contours of a face,highlighting a figure clad in a sleek black turtleneck. The garment,hugging the skin with subtle luxury,complements the Caucasian model's understated makeup,embodying minimalist elegance. Behind,a pale gray backdrop extends,its fine texture shimmering subtly in the dim light,artfully balancing the composition and focusing attention on the subject. In a palette of black,gray,and skin tones,simplicity intertwines with profundity,as every detail whispers untold stories.",0.9,"Shakker-Labs/AWPortrait-FL",""],
["Caucasian,The image features a young woman of European descent standing in an studio setting,surrounded by silk. (She is wearing a silk dress),paired with a bold. Her brown hair is wet and tousled,falling naturally around her face,giving her a raw and edgy look. The woman has an intense and direct gaze,adding to the dramatic feel of the image. The backdrop is flowing silk,big silk. The overall composition blends elements of fashion and nature,creating a striking and powerful visual",0.9,"Shakker-Labs/AWPortrait-FL",""],
["A young Japanese girl, profile, blue hours, Tokyo tower",0.9,"Shakker-Labs/FilmPortrait","filmfotos, film grain, reversal film photography"],
["A young asian girl",0.9,"Shakker-Labs/FilmPortrait","filmfotos, film grain, reversal film photography"]
]
# Gradio Interface
with gr.Blocks(css=CSS, js=JS, theme="Nymbo/Nymbo_Theme") as demo:
gr.HTML("<h1><center>Flux Labs</center></h1>")
gr.HTML("<p><center>Load the LoRA model on the menu</center></p>")
with gr.Row():
with gr.Column(scale=4):
img = gr.Gallery(label='flux Generated Image', columns = 1, preview=True, height=600)
with gr.Row():
prompt = gr.Textbox(label='Enter Your Prompt (Multi-Languages)', lines=2, placeholder="Enter prompt...", scale=6)
sendBtn = gr.Button(scale=1, variant='primary')
with gr.Accordion("Advanced Options", open=True):
with gr.Column(scale=1):
width = gr.Slider(
label="Width",
minimum=512,
maximum=1280,
step=8,
value=768,
)
height = gr.Slider(
label="Height",
minimum=512,
maximum=1280,
step=8,
value=1024,
)
scales = gr.Slider(
label="Guidance",
minimum=3.5,
maximum=7,
step=0.1,
value=3.5,
)
steps = gr.Slider(
label="Steps",
minimum=1,
maximum=100,
step=1,
value=24,
)
seed = gr.Slider(
label="Seeds",
minimum=-1,
maximum=MAX_SEED,
step=1,
value=-1,
)
nums = gr.Slider(
label="Image Numbers",
minimum=1,
maximum=4,
step=1,
value=1,
)
with gr.Column(scale=1):
lora_scale = gr.Slider(
label="LoRA Scale",
minimum=0.1,
maximum=1.0,
step=0.1,
value=0.9,
)
lora_add = gr.Textbox(
label="Flux LoRA",
info="Copy the HF LoRA model name here",
lines=1,
value="Shakker-Labs/FilmPortrait",
)
lora_word = gr.Textbox(
label="Add Flux LoRA Trigger Word",
info="Add the Trigger Word",
lines=1,
value="filmfotos, film grain, reversal film photography",
)
load_lora = gr.Button(value="Load LoRA", variant='secondary')
gr.Examples(
examples=examples,
inputs=[prompt,lora_scale,lora_add,lora_word],
cache_examples=False,
examples_per_page=4,
)
load_lora.click(fn=enable_lora, inputs=[lora_add], outputs=lora_add)
gr.on(
triggers=[
prompt.submit,
sendBtn.click,
],
fn=generate_image,
inputs=[
prompt,
lora_word,
lora_scale,
width,
height,
scales,
steps,
seed,
nums
],
outputs=[img, seed],
api_name="run",
)
demo.queue().launch() |