Spaces:
No application file
No application file
import gradio as gr | |
import torch | |
import soundfile as sf | |
import librosa | |
from moviepy.editor import VideoFileClip | |
import os | |
# Load Whisper base model and processor | |
whisper_model_name = "openai/whisper-base" | |
whisper_processor = WhisperProcessor.from_pretrained(whisper_model_name) | |
whisper_model = WhisperForConditionalGeneration.from_pretrained(whisper_model_name) | |
# Load RAG sequence model and tokenizer | |
rag_model_name = "facebook/rag-sequence-nq" | |
rag_tokenizer = RagTokenizer.from_pretrained(rag_model_name) | |
rag_retriever = RagRetriever.from_pretrained(rag_model_name, index_name="exact", use_dummy_dataset=True) | |
rag_model = RagSequenceForGeneration.from_pretrained(rag_model_name, retriever=rag_retriever) | |
def transcribe_audio(audio_path, language="ru"): | |
speech, rate = librosa.load(audio_path, sr=16000) | |
inputs = whisper_processor(speech, return_tensors="pt", sampling_rate=16000) | |
input_features = whisper_processor.feature_extractor(speech, return_tensors="pt", sampling_rate=16000).input_features | |
predicted_ids = whisper_model.generate(input_features, forced_decoder_ids=whisper_processor.get_decoder_prompt_ids(language=language, task="translate")) | |
transcription = whisper_processor.batch_decode(predicted_ids, skip_special_tokens=True)[0] | |
return transcription | |
def translate_and_summarize(text): | |
inputs = rag_tokenizer(text, return_tensors="pt") | |
input_ids = inputs["input_ids"] | |
attention_mask = inputs["attention_mask"] | |
outputs = rag_model.generate(input_ids=input_ids, attention_mask=attention_mask) | |
return rag_tokenizer.batch_decode(outputs, skip_special_tokens=True) | |
def extract_audio_from_video(video_path, output_audio_path): | |
video_clip = VideoFileClip(video_path) | |
audio_clip = video_clip.audio | |
if audio_clip is not None: | |
audio_clip.write_audiofile(output_audio_path) | |
return output_audio_path | |
else: | |
return None | |
def transcribe_audio_interface(audio_file): | |
audio_path = os.path.join("/tmp", audio_file.name) | |
with open(audio_path, "wb") as f: | |
f.write(audio_file.getvalue()) | |
transcription = transcribe_audio(audio_path) | |
return transcription | |
def summarize_text_interface(text): | |
summary = translate_and_summarize(text) | |
return summary | |
def summarize_video_interface(video_file): | |
video_path = os.path.join("/tmp", video_file.name) | |
with open(video_path, "wb") as f: | |
f.write(video_file.getvalue()) | |
audio_path = extract_audio_from_video(video_path, "/tmp/extracted_audio.wav") | |
if audio_path is not None: | |
transcription = transcribe_audio(audio_path) | |
summary = translate_and_summarize(transcription) | |
return summary | |
else: | |
return "No audio track found in the video file." | |
# Create interfaces | |
audio_transcription_interface = gr.Interface(transcribe_audio_interface, inputs="audio", outputs="text", title="Audio Transcription") | |
text_summarization_interface = gr.Interface(summarize_text_interface, inputs="text", outputs="text", title="Text Summarization") | |
video_summarization_interface = gr.Interface(summarize_video_interface, inputs="video", outputs="text", title="Video Summarization") | |
# Launch the interfaces | |
audio_transcription_interface.launch() | |
text_summarization_interface.launch() | |
video_summarization_interface.launch() | |