Vivien
Links added in the sidebar
03236d3
import numpy as np
from PIL import ImageDraw, Image, ImageFont
from transformers import DPTFeatureExtractor, DPTForDepthEstimation
import torch
import streamlit as st
FONTS = [
"Font: Serif - EBGaramond",
"Font: Serif - Cinzel",
"Font: Sans - Roboto",
"Font: Sans - Lato",
"Font: Display - Lobster",
"Font: Display - LilitaOne",
"Font: Handwriting - GreatVibes",
"Font: Handwriting - Pacifico",
"Font: Mono - Inconsolata",
"Font: Mono - Cutive",
]
def hex_to_rgb(hex):
rgb = []
for i in (0, 2, 4):
decimal = int(hex[i : i + 2], 16)
rgb.append(decimal)
return tuple(rgb)
@st.cache(allow_output_mutation=True)
def load():
feature_extractor = DPTFeatureExtractor.from_pretrained("Intel/dpt-large")
model = DPTForDepthEstimation.from_pretrained("Intel/dpt-large")
return model, feature_extractor
model, feature_extractor = load()
def compute_depth(image):
inputs = feature_extractor(images=image, return_tensors="pt")
with torch.no_grad():
outputs = model(**inputs)
predicted_depth = outputs.predicted_depth
prediction = torch.nn.functional.interpolate(
predicted_depth.unsqueeze(1),
size=image.size[::-1],
mode="bicubic",
align_corners=False,
)
return prediction.cpu().numpy()[0, 0, :, :]
def get_mask1(
shape, x, y, caption, font=None, font_size=0.08, color=(0, 0, 0), alpha=0.8
):
img_text = Image.new("RGBA", (shape[1], shape[0]), (0, 0, 0, 0))
draw = ImageDraw.Draw(img_text)
font = ImageFont.truetype(font, int(font_size * shape[1]))
draw.text(
(x * shape[1], (1 - y) * shape[0]),
caption,
fill=(*color, int(max(min(1, alpha), 0) * 255)),
font=font,
)
text = np.array(img_text)
mask1 = np.dot(np.expand_dims(text[:, :, -1] / 255, -1), np.ones((1, 3)))
return text[:, :, :-1], mask1
def get_mask2(depth_map, depth):
return np.expand_dims(
(depth_map[:, :] < depth * np.min(depth_map) + (1 - depth) * np.max(depth_map)),
-1,
)
def add_caption(
img,
caption,
depth_map=None,
x=0.5,
y=0.5,
depth=0.5,
font_size=50,
color=(255, 255, 255),
font="",
alpha=1,
):
text, mask1 = get_mask1(
img.shape,
x,
y,
caption,
font=font,
font_size=font_size,
color=color,
alpha=alpha,
)
mask2 = get_mask2(depth_map, depth)
mask = mask1 * np.dot(mask2, np.ones((1, 3)))
return ((1 - mask) * img + mask * text).astype(np.uint8)
@st.cache(max_entries=30, show_spinner=False)
def load_img(uploaded_file):
if uploaded_file is None:
img = Image.open("pulp.jpg")
default = True
else:
img = Image.open(uploaded_file)
if img.size[0] > 800 or img.size[1] > 800:
if img.size[0] < img.size[1]:
new_size = (int(800 * img.size[0] / img.size[1]), 800)
else:
new_size = (800, int(800 * img.size[1] / img.size[0]))
img = img.resize(new_size)
default = False
return np.array(img), compute_depth(img), default
def main():
st.markdown(
"""
<style>
label{
height: 0px !important;
min-height: 0px !important;
margin-bottom: 0px !important;
}
</style>
""",
unsafe_allow_html=True,
)
st.sidebar.markdown(
"""
# Depth-aware text addition
Add text ***inside*** an image!
Upload an image, enter some text and adjust the ***depth*** where you want the text to be displayed. You can also define its location and appearance (font, color, transparency and size).
Built with [PyTorch](https://pytorch.org/), Intel's [MiDaS model](https://pytorch.org/hub/intelisl_midas_v2/), [Streamlit](https://streamlit.io/), [pillow](https://python-pillow.org/) and inspired by the official [video](https://youtu.be/eTa1jHk1Lxc) of *Jenny of Oldstones* by Florence + the Machine
To go further:
- [blog post](https://vivien000.github.io/blog/journal/adding-text-inside-pictures-and-videos.html)
- [notebook](https://colab.research.google.com/github/vivien000/depth-aware_captioning/blob/master/Depth_aware_Video_Captioning.ipynb) for videos
- [examples](https://youtu.be/RtkBplRuWhg?list=PLlPB25tBWqtVhj4Ink8hl9Evc2dlIX4Jh) of videos
"""
)
uploaded_file = st.file_uploader("", type=["jpg", "jpeg"])
with st.spinner("Analyzing the image - Please wait a few seconds"):
img, depth_map, default = load_img(uploaded_file)
if default:
x0, y0, alpha0, font_size0, depth0, font0 = 0.02, 0.68, 0.99, 0.07, 0.12, 4
text0 = "Pulp Fiction"
else:
x0, y0, alpha0, font_size0, depth0, font0 = 0.1, 0.9, 0.8, 0.08, 0.5, 0
text0 = "Enter your text here"
colA, colB, colC = st.columns((13, 1, 1))
with colA:
text = st.text_input("", text0)
with colB:
st.markdown("Color:")
with colC:
color = st.color_picker("", value="#FFFFFF")
col1, _, col2 = st.columns((4, 1, 4))
with col1:
depth = st.select_slider(
"",
options=[i / 100 for i in range(101)],
value=depth0,
format_func=lambda x: "Foreground"
if x == 0.0
else "Background"
if x == 1.0
else "",
)
x = st.select_slider(
"",
options=[i / 100 for i in range(101)],
value=x0,
format_func=lambda x: "Left" if x == 0.0 else "Right" if x == 1.0 else "",
)
y = st.select_slider(
"",
options=[i / 100 for i in range(101)],
value=y0,
format_func=lambda x: "Bottom" if x == 0.0 else "Top" if x == 1.0 else "",
)
with col2:
font_size = st.select_slider(
"",
options=[0.04 + i / 100 for i in range(0, 17)],
value=font_size0,
format_func=lambda x: "Small font"
if x == 0.04
else "Large font"
if x == 0.2
else "",
)
alpha = st.select_slider(
"",
options=[i / 100 for i in range(101)],
value=alpha0,
format_func=lambda x: "Transparent"
if x == 0.0
else "Opaque"
if x == 1.0
else "",
)
font = st.selectbox("", FONTS, index=font0)
font = f"fonts/{font[6:]}.ttf"
captioned = add_caption(
img,
text,
x=x,
y=y,
depth=depth,
depth_map=depth_map,
font=font,
font_size=font_size,
alpha=alpha,
color=hex_to_rgb(color[1:]),
)
st.image(captioned)
if __name__ == "__main__":
main()