File size: 8,934 Bytes
ada4b81
 
 
 
37043d2
ada4b81
 
 
 
 
 
 
 
 
 
 
 
 
 
8284f69
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
ada4b81
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
3a70769
ada4b81
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
from model.data_utils import to_mesh
from model.serializaiton import BPT_deserialize
import spaces
import os
import subprocess
import torch
import trimesh
from accelerate.utils import set_seed
import numpy as np
import gradio as gr
import time
import matplotlib.pyplot as plt
from mpl_toolkits.mplot3d.art3d import Poly3DCollection
from matplotlib.animation import FuncAnimation
import yaml
from huggingface_hub import snapshot_download
from model.model import MeshTransformer
from utils import apply_normalize, joint_filter, sample_pc

def install_cuda_toolkit():
    # CUDA_TOOLKIT_URL = "https://developer.download.nvidia.com/compute/cuda/11.8.0/local_installers/cuda_11.8.0_520.61.05_linux.run"
    CUDA_TOOLKIT_URL = "https://developer.download.nvidia.com/compute/cuda/12.2.0/local_installers/cuda_12.2.0_535.54.03_linux.run"
    CUDA_TOOLKIT_FILE = "/tmp/%s" % os.path.basename(CUDA_TOOLKIT_URL)
    subprocess.call(["wget", "-q", CUDA_TOOLKIT_URL, "-O", CUDA_TOOLKIT_FILE])
    subprocess.call(["chmod", "+x", CUDA_TOOLKIT_FILE])
    subprocess.call([CUDA_TOOLKIT_FILE, "--silent", "--toolkit"])

    os.environ["CUDA_HOME"] = "/usr/local/cuda"
    os.environ["PATH"] = "%s/bin:%s" % (os.environ["CUDA_HOME"], os.environ["PATH"])
    os.environ["LD_LIBRARY_PATH"] = "%s/lib:%s" % (
        os.environ["CUDA_HOME"],
        "" if "LD_LIBRARY_PATH" not in os.environ else os.environ["LD_LIBRARY_PATH"],
    )
    # Fix: arch_list[-1] += '+PTX'; IndexError: list index out of range
    os.environ["TORCH_CUDA_ARCH_LIST"] = "8.0;8.6"

install_cuda_toolkit()

CONFIG_PATH = 'config/BPT-open-8k-8-16.yaml'
with open(CONFIG_PATH, "r") as f:
    config = yaml.load(f, Loader=yaml.FullLoader)


def download_models():
    os.makedirs("weights", exist_ok=True)
    try:
        snapshot_download(
            repo_id="whaohan/bpt",
            local_dir="./weights",
            resume_download=True
        )
        print("Successfully downloaded Hunyuan3D-1 model")
    except Exception as e:
        print(f"Error downloading Hunyuan3D-1: {e}")

    model_path = 'weights/bpt-8-16-500m.pt'
    return model_path
 
MODEL_PATH = download_models()


# prepare model with fp16 precision
model = MeshTransformer(
    dim = config['dim'],
    attn_depth = config['depth'],
    max_seq_len = config['max_seq_len'],
    dropout = config['dropout'],
    mode = config['mode'],
    num_discrete_coors= 2**int(config['quant_bit']),
    block_size = config['block_size'],
    offset_size = config['offset_size'],
    conditioned_on_pc = config['conditioned_on_pc'],
    use_special_block = config['use_special_block'],
    encoder_name = config['encoder_name'],
    encoder_freeze = config['encoder_freeze'],
)
model.load(MODEL_PATH)
model = model.eval()
model = model.half()
model = model.cuda()
device = torch.device('cuda')
print('Model loaded')


def create_animation(mesh):
    mesh.vertices = mesh.vertices[:, [2, 0, 1]]

    bounding_box = mesh.bounds
    center = mesh.centroid
    scale = np.ptp(bounding_box, axis=0).max()

    fig = plt.figure(figsize=(10, 10))

    ax = fig.add_subplot(111, projection='3d')
    ax.set_axis_off()

    # Extract vertices and faces for plotting
    vertices = mesh.vertices
    faces = mesh.faces

    # Plot faces
    ax.add_collection3d(Poly3DCollection(
        vertices[faces] * 1.4,
        facecolors=[120/255, 154/255, 192/255, 255/255],
        edgecolors='k',
        linewidths=0.5,
    ))

    # Set limits and center the view on the object
    ax.set_xlim(center[0] - scale / 2, center[0] + scale / 2)
    ax.set_ylim(center[1] - scale / 2, center[1] + scale / 2)
    ax.set_zlim(center[2] - scale / 2, center[2] + scale / 2)

    # Function to update the view angle
    def update_view(num, ax):
        ax.view_init(elev=20, azim=num)
        return ax,

    # Create the animation
    ani = FuncAnimation(fig, update_view, frames=np.arange(0, 360, 10), interval=100, fargs=(ax,), blit=False)

    # Save the animation as a GIF
    output_path = f'model_{int(time.time())}.gif'
    ani.save(output_path, writer='pillow', fps=10)

    # Close the figure
    plt.close(fig)
    
    return output_path


@spaces.GPU(duration=340)
def do_inference(input_3d, sample_seed=0, temperature=0.5, top_k_value=50, top_p_value=0.9):
    print('Start Inference')
    set_seed(sample_seed)
    print("Seed value:", sample_seed)

    mesh = trimesh.load(input_3d, force='mesh')
    mesh = apply_normalize(mesh)
    pc_normal = sample_pc(mesh, pc_num=4096, with_normal=True)
    vertices = mesh.vertices

    pc_coor = pc_normal[:, :3]
    normals = pc_normal[:, 3:]
    assert (np.linalg.norm(normals, axis=-1) > 0.99).all(), "normals should be unit vectors, something wrong"
    normalized_pc_normal = np.concatenate([pc_coor, normals], axis=-1, dtype=np.float16)
    input = torch.tensor(normalized_pc_normal, dtype=torch.float16, device=device)[None]
    print("Data loaded")

    with torch.no_grad():
        code = model.generate(
            batch_size = 1,
            temperature = temperature,
            pc = input,
            filter_logits_fn = joint_filter,
            filter_kwargs = dict(k=top_k_value, p=top_p_value),
            return_codes=True,
        )[0]
        
    print("Model inference done")

    # convert to mesh
    code = code[code != model.pad_id].cpu().numpy()
    vertices = BPT_deserialize(
        code, 
        block_size = model.block_size, 
        offset_size = model.offset_size,
        use_special_block = model.use_special_block,
    )
    faces = torch.arange(1, len(vertices) + 1).view(-1, 3)
    artist_mesh = to_mesh(vertices, faces, transpose=False, post_process=True)

    # add color for visualization
    num_faces = len(artist_mesh.faces)
    face_color = np.array([120, 154, 192, 255], dtype=np.uint8)
    face_colors = np.tile(face_color, (num_faces, 1))
    artist_mesh.visual.face_colors = face_colors
    
    # add time stamp to avoid cache
    save_name = f"output_{int(time.time())}.obj"
    artist_mesh.export(save_name)
    output_render = create_animation(artist_mesh)
    return save_name, output_render


_HEADER_ = '''
<h2><b>Official 🤗 Gradio Demo for Paper</b> <a href='https://github.com/whaohan/bpt' target='_blank'><b>Scaling Mesh Generation with Compressive Tokenization</b></a></h2>
'''

_CITE_ = r"""
If you found our model is helpful, please help to ⭐ the <a href='https://github.com/whaohan/bpt' target='_blank'>Github Repo</a>. Code: <a href='https://github.com/whaohan/bpt' target='_blank'>GitHub</a>. Arxiv Paper: <a href='https://arxiv.org/abs/2411.07025' target='_blank'>ArXiv</a>.

📧 **Contact**
If you have any questions, feel free to contact <a href='https://whaohan.github.io' target='_blank'>Haohan Weng</a>.
"""

output_model_obj = gr.Model3D(
    label="Generated Mesh (OBJ Format)",
    display_mode="wireframe",
    scale = 2,
)

output_image_render = gr.Image(
    label="Wireframe Render of Generated Mesh",
    scale = 1,
)

with gr.Blocks() as demo:
    gr.Markdown(_HEADER_)
    with gr.Row(variant="panel"):
        with gr.Column(scale=1):
            with gr.Row():
                input_3d = gr.Model3D(
                    label="Input Mesh",
                )

            # with gr.Row():
            #     # with gr.Group():
            with gr.Row():
                sample_seed = gr.Number(value=0, label="Seed Value", precision=0)
                temperature = gr.Number(value=0.5, label="Temperature For Sampling", precision=None)
            with gr.Row():
                top_k_value = gr.Number(value=50, label="TopK For Sampling", precision=0)
                top_p_value = gr.Number(value=0.9, label="TopP For Sampling", precision=None)

            with gr.Row():
                submit = gr.Button("Generate", elem_id="generate", variant="primary")

            with gr.Row(variant="panel"):
                mesh_examples = gr.Examples(
                    examples=[
                        os.path.join("examples", img_name) for img_name in sorted(os.listdir("examples"))
                    ],
                    inputs=input_3d,
                    outputs=[output_model_obj, output_image_render],
                    fn=do_inference,
                    cache_examples = False,
                    examples_per_page=10
                )
                
            with gr.Row():
                gr.Markdown('''Try different <b>Seed Value</b> or <b>Temperature</b> if the result is unsatisfying''')
                
        with gr.Column(scale=2):
            with gr.Row(equal_height=True):
                output_model_obj.render()
                output_image_render.render()
                

    gr.Markdown(_CITE_)

    mv_images = gr.State()

    submit.click(
        fn=do_inference,
        inputs=[input_3d, sample_seed, temperature, top_k_value, top_p_value],
        outputs = [output_model_obj, output_image_render],
    )


demo.launch(share=True)