Zekun Wu
update
93e0e7d
raw
history blame
20.1 kB
import streamlit as st
import os
import json
from openai import AzureOpenAI
from model import invoke, create_models, configure_settings, load_documents_and_create_index, \
create_chat_prompt_template, execute_query
client = AzureOpenAI(azure_endpoint = "https://personalityanalysisfinetuning.openai.azure.com/",api_key=os.environ.get("AZURE_OPENAI_KEY"), api_version="2024-02-01")
example_profile = {
"Team": [
{
"name": "JAMES ARTHUR",
"main_profile": {
"VISION": {
"score": "HIGH"
},
"IDEATION": {
"score": "HIGH"
},
"OPPORTUNISM": {
"score": "HIGH"
},
"DRIVE": {
"score": "HIGH"
},
"RESILIENCE": {
"score": "HIGH"
}
},
"red_flag": {
"HUBRIS": {
"score": "HIGH"
},
"MERCURIAL": {
"score": "LOW"
},
"DOMINANT": {
"score": "HIGH"
},
"MACHIAVELLIAN": {
"score": "AVERAGE"
}
}
},
{
"name": "LOUSIE HART",
"main_profile": {
"VISION": {
"score": "AVERAGE"
},
"IDEATION": {
"score": "AVERAGE"
},
"OPPORTUNISM": {
"score": "AVERAGE"
},
"DRIVE": {
"score": "HIGH"
},
"RESILIENCE": {
"score": "HIGH"
}
},
"red_flag": {
"HUBRIS": {
"score": "AVERAGE"
},
"MERCURIAL": {
"score": "LOW"
},
"DOMINANT": {
"score": "HIGH"
},
"MACHIAVELLIAN": {
"score": "LOW"
}
}
},
{
"name": "SIMONE LEVY",
"main_profile": {
"VISION": {
"score": "LOW"
},
"IDEATION": {
"score": "AVERAGE"
},
"OPPORTUNISM": {
"score": "LOW"
},
"DRIVE": {
"score": "AVERAGE"
},
"RESILIENCE": {
"score": "LOW"
}
},
"red_flag": {
"HUBRIS": {
"score": "LOW"
},
"MERCURIAL": {
"score": "LOW"
},
"DOMINANT": {
"score": "LOW"
},
"MACHIAVELLIAN": {
"score": "LOW"
}
}
},
{
"name": "Uri Lef",
"main_profile": {
"VISION": {
"score": "HIGH"
},
"IDEATION": {
"score": "HIGH"
},
"OPPORTUNISM": {
"score": "HIGH"
},
"DRIVE": {
"score": "AVERAGE"
},
"RESILIENCE": {
"score": "LOW"
}
},
"red_flag": {
"HUBRIS": {
"score": "AVERAGE"
},
"MERCURIAL": {
"score": "HIGH"
},
"DOMINANT": {
"score": "HIGH"
},
"MACHIAVELLIAN": {
"score": "AVERAGE"
}
}
}
]
}
# Function to generate a completion using OpenAI API
# def generate_one_completion(message, temperature):
# response = client.chat.completions.create(
# model="personality_gpt4o",
# temperature=temperature,
# max_tokens=1000, # Adjust based on desired response length
# frequency_penalty=0.2, # To avoid repetition
# presence_penalty=0.2, # To introduce new topics
# messages= message,
# stream=False
# )
#
# return response
import json
def generate_prompt_from_profile(profile, version="TeamSummary"):
with open('prompts.json') as f:
prompt_sets = json.load(f)['Prompts']
prompt_templates = prompt_sets[version]
try:
team_members = profile['Team']
team_member_profiles = []
for member in team_members:
profile = f"{member['name']}: Main Profile - VISION: {member['main_profile']['VISION']['score']}, " \
f"IDEATION: {member['main_profile']['IDEATION']['score']}, " \
f"OPPORTUNISM: {member['main_profile']['OPPORTUNISM']['score']}, " \
f"DRIVE: {member['main_profile']['DRIVE']['score']}, " \
f"RESILIENCE: {member['main_profile']['RESILIENCE']['score']}. " \
f"Red Flags - HUBRIS: {member['red_flag']['HUBRIS']['score']}, " \
f"MERCURIAL: {member['red_flag']['MERCURIAL']['score']}, " \
f"DOMINANT: {member['red_flag']['DOMINANT']['score']}, " \
f"MACHIAVELLIAN: {member['red_flag']['MACHIAVELLIAN']['score']}."
team_member_profiles.append(profile)
# Join the team member profiles into a single string
team_member_profiles_str = "\n".join(team_member_profiles)
prompt = prompt_templates[0].replace("{{TEAM_MEMBERS}}", team_member_profiles_str)
except KeyError as e:
return [{"role": "system", "content": f"Error processing profile data: missing {str(e)}"}]
message = [
{"role": "system", "content": prompt_sets["System"][0]},
{"role": "user", "content": prompt}
]
return message
def display_profile_info(profile):
st.markdown("### Profile Information:")
team_members = profile["Team"]
for member in team_members:
st.sidebar.markdown(f"#### {member['name']}")
main_profile = member["main_profile"]
red_flag = member["red_flag"]
st.sidebar.markdown("### Main Profile:")
st.sidebar.markdown("\n".join([f"- **{attribute}**: {details['score']}" for attribute, details in main_profile.items()]))
st.sidebar.markdown("### Red Flags:")
st.sidebar.markdown("\n".join([f"- **{attribute}**: {details['score']}" for attribute, details in red_flag.items()]))
# main_profile = profile["main_profile"]
# red_flag = profile["red_flag"]
# bio_info = profile["bio_information"]
#
# st.sidebar.markdown("### Bio Information: ")
# st.sidebar.markdown("\n".join([f"- **{key.replace('_', ' ')}**: {value}" for key, value in bio_info.items()]))
# st.sidebar.markdown("### Main Profile: ")
# st.sidebar.markdown("\n".join([f"- **{attribute}**: {details['score']} - {details['summary']}" for attribute, details in main_profile.items()]))
# st.sidebar.markdown("### Red Flags: ")
# st.sidebar.markdown("\n".join([f"- **{attribute}**: {details['score']} - {details['summary']}" for attribute, details in red_flag.items()]))
def validate_json(profile):
required_keys = ['Team']
for key in required_keys:
if key not in profile:
return False, f"Key '{key}' is missing."
if not isinstance(profile[key], dict):
return False, f"'{key}' should be a dictionary."
return True, "JSON structure is valid."
def logout():
st.session_state['authenticated'] = False
st.session_state['profile'] = None
st.session_state['show_chat'] = None
st.session_state['analysis'] = None
st.rerun()
def main_app():
sidebar_components()
if st.button('Logout'):
logout()
# Streamlit app
st.title('Metaprofiling\'s Career Insight Analyzer Demo')
# Check if a profile is selected
if st.session_state['profile']:
profile = st.session_state['profile']
display_profile_info(profile) # Display the profile information
st.markdown("""
### Generation Temperature
Adjust the 'Generation Temperature' to control the creativity of the AI responses.
- A *lower temperature* (closer to 0.0) generates more predictable, conservative responses.
- A *higher temperature* (closer to 1.0) generates more creative, diverse responses.
""")
# Temperature slider
st.session_state['temperature'] = st.slider("",min_value=0.0, max_value=1.0, value=0.5, step=0.01)
# Allow user to choose from different versions of the prompt
st.session_state['version'] = st.selectbox("Select Prompt Version", ["TeamSummary"])
# Generate and display prompt
if st.button(f'Analyze Profile ({st.session_state["version"]})'):
#with st.spinner('Generating completion...'):
prompt = generate_prompt_from_profile(profile, version=st.session_state['version'])
with st.chat_message("assistant"):
stream = client.chat.completions.create(
model="personality_gpt4o",
temperature=st.session_state['temperature'],
max_tokens=1000, # Adjust based on desired response length
frequency_penalty=0.2, # To avoid repetition
presence_penalty=0.2, # To introduce new topics
messages= prompt,
stream=True)
response = st.write_stream(stream)
#st.markdown(response_test_taker)
st.session_state['analysis'] = response
st.session_state['show_chat'] = True
st.rerun()
# display the response
if st.session_state['analysis']:
st.markdown(st.session_state['analysis'])
else:
st.write("Please upload a profile JSON file or use the example profile.")
# if st.session_state['analysis']:
# st.markdown(st.session_state['analysis'])
# #st.markdown("### Analysis:")
# #analysis_container = st.container()
# # with analysis_container:
# #st.markdown(st.session_state['analysis'].choices[0].message.content)
#
# st.markdown("### Token Usage:")
# token_usage_container = st.expander("Show Token Usage Details")
# with token_usage_container:
# total_tokens = st.session_state['analysis'].usage.total_tokens
# prompt_tokens = st.session_state['analysis'].usage.prompt_tokens
# completion_tokens = st.session_state['analysis'].usage.completion_tokens
# costs = (0.01 / 1000) * prompt_tokens + (0.03 / 1000) * completion_tokens
# st.write(f'**Total tokens:** {total_tokens}')
# st.progress(completion_tokens / 1000)
# st.write(f'**Prompt tokens:** {prompt_tokens}')
# st.write(f'**Completion tokens:** {completion_tokens}')
# st.write(f'**Generation costs ($):** {costs}')
# Function to verify credentials and set the session state
def verify_credentials():
if st.session_state['username'] == os.getenv("username_app") and st.session_state['password'] == os.getenv("password_app"):
st.session_state['authenticated'] = True
else:
st.error("Invalid username or password")
# Login page
def login_page():
st.title("Welcome to Metaprofiling's Career Insight Analyzer Demo")
st.write("This application provides in-depth analysis and insights into professional profiles. Please log in to continue.")
# Description and Instructions
st.markdown("""
## How to Use This Application
- Enter your username and password in the sidebar.
- Click on 'Login' to access the application.
- Once logged in, you will be able to upload and analyze professional profiles.
""")
st.sidebar.write("Login:")
username = st.sidebar.text_input("Username")#, key='username')
password = st.sidebar.text_input("Password", type="password")#, key='password')
st.session_state['username'] = username
st.session_state['password'] = password
st.sidebar.button("Login", on_click=verify_credentials)
def sidebar_components():
with st.sidebar:
if st.button('Reset'):
st.session_state['profile'] = None
st.session_state['show_chat'] = None
st.session_state['analysis'] = None
st.rerun()
if not st.session_state['show_chat']:
# Instructions for JSON format
st.markdown("### JSON File Requirements:")
st.markdown("1. Must contain 'bio_information', 'main_profile', and 'red_flag' as top-level keys.")
st.markdown("2. Both keys should have dictionary values.")
# File uploader
st.markdown("### Upload a profile JSON file")
uploaded_file = st.file_uploader("", type=['json'])
if uploaded_file is not None:
try:
profile_data = json.load(uploaded_file)
valid, message = validate_json(profile_data)
if valid:
st.session_state['profile'] = profile_data
else:
st.error(message)
except json.JSONDecodeError:
st.error("Invalid JSON file. Please upload a valid JSON file.")
# Button to load example profile
if st.button('Use Example Profile'):
st.session_state['profile'] = example_profile
# elif uploaded_file is not None:
# st.session_state['profile'] = json.load(uploaded_file)
else:
st.sidebar.title("Chat with Our Career Advisor")
st.sidebar.markdown("Hello, we hope you learned something about yourself in this report. This chat is here so you can ask any questions you have about your report! It’s also a great tool to get ideas about how you can use the information in your report for your personal development and achieving your current goals.")
# question_message = generate_prompt_from_profile(st.session_state['profile'])
# question_message.append(
# {"role": "system", "content": st.session_state['analysis'].choices[0].message.content})
# question_prompt = (
# f"Based on the earlier profile summary and analysis results about the individual, "
# f"generate two insightful questions that could be asked by that individual for further discussion about themself:\n\n"
# f"Provide me the questions in different new line."
# f"Suggested Questions:\n"
# )
#question_message.append({"role": "user", "content": question_prompt})
# questions = generate_one_completion(question_message, 0)
#
# questions_list = [question.strip() for question in questions.choices[0].message.content.split('\n')
# if question.strip()]
# questions_list = []
# print(questions_list)
# # Prepare the questions for Markdown display
# questions_markdown = "\n\n".join(
# [f"Q{question}" for index, question in enumerate(questions_list[:2])])
# Name to be included in the questions
name = st.session_state['profile']['bio_information'].get('Name', 'the individual')
# List of question templates where {} will be replaced with the name
question_templates = [
"What are the main risks associated with {}’s profile?",
"What are the implications of {}’s profile for working with others?",
"What conclusions might we draw from his profile about {}’s style of leadership?",
"Looking specifically at {}'s Red Flags, are there any particular areas of concern?",
"Based on this profile, is {} better suited as a COO or a CEO?",
"If speed of execution is important, based on his profile, how likely is {} to be able to achieve this?",
"How is {} likely to react to business uncertainty and disruption?",
"Based on his profile, what should a coaching plan designed for {} focus on?"
]
# Formatting each question template with the name
questions_list = [question.format("Test Taker") for question in question_templates]
# Prepare the questions for Markdown display
questions_markdown = "\n\n".join(
[f"Q{index + 1}: {question}" for index, question in enumerate(questions_list)])
# Code to display in the app
st.sidebar.markdown("### Suggest Questions")
st.sidebar.markdown(questions_markdown)
# st.sidebar.text_area("Suggested Questions", value=questions.choices[0].message.content, height=200, disabled=True)
user_input = st.sidebar.text_input("Ask a question about the profile analysis:")
llm, embed_model = create_models()
configure_settings(llm, embed_model)
index = load_documents_and_create_index()
if st.sidebar.button('Submit'):
if user_input:
# with open('prompts.json') as f:
# prompt_sets = json.load(f)['Prompts']
# instruction = prompt_sets['Question']
# instruction = (
# "You are a knowledgeable advisor providing insights based on the specific analysis provided earlier. "
# "Your responses should around 100 words, directly relate to the user's question, drawing on relevant details from the analysis. "
# "If the user's question does not pertain to the analysis or is beyond the scope of the information provided, "
# "politely decline to answer, stating that the question is outside the analysis context. Focus on delivering "
# "concise, accurate, insightful, and relevant information. \n\n"
# "Question: " + user_input
# )
# message = generate_prompt_from_profile(st.session_state['profile'])
# message.append({"role": "system", "content": st.session_state['analysis']})
# message.append({"role": "user", "content": "\n".join(instruction).replace('{{QUESTION}}', user_input)})
# with st.chat_message("assistant"):
# stream = client.chat.completions.create(
# model="personality_gpt4",
# temperature=st.session_state['temperature'],
# max_tokens=500, # Adjust based on desired response length
# frequency_penalty=0.2, # To avoid repetition
# presence_penalty=0.2, # To introduce new topics
# messages=message,
# stream=True
# )
chat_prompt_template = create_chat_prompt_template(st.session_state['analysis'])
response = execute_query(index, chat_prompt_template, user_input)
#response = st.write_stream(stream)
# output = generate_one_completion(message,st.session_state['temperature'])
#
# #st.sidebar.text_area("Response", value=output.choices[0].message.content, height=200, disabled=True)
st.sidebar.markdown(response)
# Display the sidebar components based on the state
if 'show_chat' not in st.session_state:
st.session_state['show_chat'] = None
if 'profile' not in st.session_state:
st.session_state['profile'] = None
if 'analysis' not in st.session_state:
st.session_state['analysis'] = None
if 'temperature' not in st.session_state:
st.session_state['temperature'] = 0
if 'version' not in st.session_state:
st.session_state['version'] = ""
# Initialize session state for username, password, and authentication
if 'username' not in st.session_state:
st.session_state['username'] = ''
if 'password' not in st.session_state:
st.session_state['password'] = ''
if 'authenticated' not in st.session_state:
st.session_state['authenticated'] = False
# Show login or main app based on authentication
if st.session_state['authenticated']:
main_app()
else:
login_page()