File size: 18,113 Bytes
fe341fa
 
 
 
 
 
87b094b
fe341fa
 
 
685d601
095197b
fe341fa
 
47faf95
fe341fa
248504c
fe341fa
 
92c9b72
96a8446
f010147
92c9b72
fe341fa
57812df
 
 
52c0570
 
 
 
57812df
 
 
 
 
 
 
 
fe341fa
 
57812df
 
fe341fa
 
 
 
 
 
 
 
 
 
 
 
a833ee2
 
fe341fa
 
 
 
 
 
 
 
 
 
7b0eb95
c15e25c
 
 
fe341fa
c15e25c
fe341fa
 
 
 
c15e25c
 
fe341fa
 
7b0eb95
c15e25c
 
 
 
7b0eb95
47faf95
7b0eb95
47faf95
7b0eb95
47faf95
c15e25c
47faf95
 
4250f84
fe341fa
 
 
 
 
 
f010147
fe341fa
 
 
 
 
 
 
 
 
 
 
 
e9a0ae6
fe341fa
 
 
e9a0ae6
 
fe341fa
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
577f298
84f9bb5
577f298
 
f010147
577f298
fe341fa
 
 
 
57812df
fe341fa
9c91aea
fe341fa
 
 
 
9c91aea
 
fe341fa
 
 
 
 
 
 
9c91aea
fe341fa
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
0e341c5
fe341fa
 
720aaa6
 
 
fe341fa
 
 
 
 
 
 
 
 
 
 
 
 
 
4250f84
fe341fa
 
 
 
 
 
 
 
 
 
 
 
be9edff
720aaa6
5948f20
 
 
fe341fa
 
f5b8f7d
9646ca4
fe341fa
 
5948f20
 
 
 
 
fe341fa
 
5948f20
c9798ae
fe341fa
 
 
 
9646ca4
 
f5b8f7d
9646ca4
fe341fa
 
 
9646ca4
fe341fa
 
08d4918
fe341fa
685d601
fe341fa
 
685d601
fe341fa
64bce3c
095197b
685d601
 
64bce3c
 
f010147
64bce3c
ae53f50
20d45aa
08d4918
 
 
 
 
 
095197b
 
1542cca
 
 
 
 
 
57812df
1542cca
 
 
 
 
 
f010147
 
 
fe341fa
 
b6ed110
efe60b5
 
b6ed110
fe341fa
4250f84
fe341fa
 
f7bc685
fe341fa
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
69ea70c
49abc72
 
69ea70c
 
 
 
 
 
 
49abc72
69ea70c
 
 
 
 
49abc72
69ea70c
 
 
49abc72
69ea70c
 
 
 
 
 
 
 
49abc72
69ea70c
 
96e36a7
 
 
f010147
fe341fa
96e36a7
 
fe341fa
 
96e36a7
 
 
 
 
 
 
 
 
fe341fa
 
96e36a7
fe341fa
96e36a7
20d45aa
 
248504c
20d45aa
02719dd
20d45aa
02719dd
20d45aa
87b094b
20d45aa
87b094b
 
 
 
 
850970e
87b094b
248504c
 
 
87b094b
 
 
 
 
248504c
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
# Plotting utils

from copy import copy
from pathlib import Path

import cv2
import math
import matplotlib
import matplotlib.pyplot as plt
import numpy as np
import pandas as pd
import seaborn as sn
import torch
import yaml
from PIL import Image, ImageDraw, ImageFont

from utils.general import xywh2xyxy, xyxy2xywh
from utils.metrics import fitness

# Settings
matplotlib.rc('font', **{'size': 11})
matplotlib.use('Agg')  # for writing to files only


class Colors:
    # Ultralytics color palette https://ultralytics.com/
    def __init__(self):
        # hex = matplotlib.colors.TABLEAU_COLORS.values()
        hex = ('FF3838', 'FF9D97', 'FF701F', 'FFB21D', 'CFD231', '48F90A', '92CC17', '3DDB86', '1A9334', '00D4BB',
               '2C99A8', '00C2FF', '344593', '6473FF', '0018EC', '8438FF', '520085', 'CB38FF', 'FF95C8', 'FF37C7')
        self.palette = [self.hex2rgb('#' + c) for c in hex]
        self.n = len(self.palette)

    def __call__(self, i, bgr=False):
        c = self.palette[int(i) % self.n]
        return (c[2], c[1], c[0]) if bgr else c

    @staticmethod
    def hex2rgb(h):  # rgb order (PIL)
        return tuple(int(h[1 + i:1 + i + 2], 16) for i in (0, 2, 4))


colors = Colors()  # create instance for 'from utils.plots import colors'


def hist2d(x, y, n=100):
    # 2d histogram used in labels.png and evolve.png
    xedges, yedges = np.linspace(x.min(), x.max(), n), np.linspace(y.min(), y.max(), n)
    hist, xedges, yedges = np.histogram2d(x, y, (xedges, yedges))
    xidx = np.clip(np.digitize(x, xedges) - 1, 0, hist.shape[0] - 1)
    yidx = np.clip(np.digitize(y, yedges) - 1, 0, hist.shape[1] - 1)
    return np.log(hist[xidx, yidx])


def butter_lowpass_filtfilt(data, cutoff=1500, fs=50000, order=5):
    from scipy.signal import butter, filtfilt

    # https://stackoverflow.com/questions/28536191/how-to-filter-smooth-with-scipy-numpy
    def butter_lowpass(cutoff, fs, order):
        nyq = 0.5 * fs
        normal_cutoff = cutoff / nyq
        return butter(order, normal_cutoff, btype='low', analog=False)

    b, a = butter_lowpass(cutoff, fs, order=order)
    return filtfilt(b, a, data)  # forward-backward filter


def plot_one_box(x, im, color=(128, 128, 128), label=None, line_thickness=3):
    # Plots one bounding box on image 'im' using OpenCV
    assert im.data.contiguous, 'Image not contiguous. Apply np.ascontiguousarray(im) to plot_on_box() input image.'
    tl = line_thickness or round(0.002 * (im.shape[0] + im.shape[1]) / 2) + 1  # line/font thickness
    c1, c2 = (int(x[0]), int(x[1])), (int(x[2]), int(x[3]))
    cv2.rectangle(im, c1, c2, color, thickness=tl, lineType=cv2.LINE_AA)
    if label:
        tf = max(tl - 1, 1)  # font thickness
        t_size = cv2.getTextSize(label, 0, fontScale=tl / 3, thickness=tf)[0]
        c2 = c1[0] + t_size[0], c1[1] - t_size[1] - 3
        cv2.rectangle(im, c1, c2, color, -1, cv2.LINE_AA)  # filled
        cv2.putText(im, label, (c1[0], c1[1] - 2), 0, tl / 3, [225, 255, 255], thickness=tf, lineType=cv2.LINE_AA)


def plot_one_box_PIL(box, im, color=(128, 128, 128), label=None, line_thickness=None):
    # Plots one bounding box on image 'im' using PIL
    im = Image.fromarray(im)
    draw = ImageDraw.Draw(im)
    line_thickness = line_thickness or max(int(min(im.size) / 200), 2)
    draw.rectangle(box, width=line_thickness, outline=color)  # plot
    if label:
        font = ImageFont.truetype("Arial.ttf", size=max(round(max(im.size) / 40), 12))
        txt_width, txt_height = font.getsize(label)
        draw.rectangle([box[0], box[1] - txt_height + 4, box[0] + txt_width, box[1]], fill=color)
        draw.text((box[0], box[1] - txt_height + 1), label, fill=(255, 255, 255), font=font)
    return np.asarray(im)


def plot_wh_methods():  # from utils.plots import *; plot_wh_methods()
    # Compares the two methods for width-height anchor multiplication
    # https://github.com/ultralytics/yolov3/issues/168
    x = np.arange(-4.0, 4.0, .1)
    ya = np.exp(x)
    yb = torch.sigmoid(torch.from_numpy(x)).numpy() * 2

    fig = plt.figure(figsize=(6, 3), tight_layout=True)
    plt.plot(x, ya, '.-', label='YOLOv3')
    plt.plot(x, yb ** 2, '.-', label='YOLOv5 ^2')
    plt.plot(x, yb ** 1.6, '.-', label='YOLOv5 ^1.6')
    plt.xlim(left=-4, right=4)
    plt.ylim(bottom=0, top=6)
    plt.xlabel('input')
    plt.ylabel('output')
    plt.grid()
    plt.legend()
    fig.savefig('comparison.png', dpi=200)


def output_to_target(output):
    # Convert model output to target format [batch_id, class_id, x, y, w, h, conf]
    targets = []
    for i, o in enumerate(output):
        for *box, conf, cls in o.cpu().numpy():
            targets.append([i, cls, *list(*xyxy2xywh(np.array(box)[None])), conf])
    return np.array(targets)


def plot_images(images, targets, paths=None, fname='images.jpg', names=None, max_size=640, max_subplots=16):
    # Plot image grid with labels

    if isinstance(images, torch.Tensor):
        images = images.cpu().float().numpy()
    if isinstance(targets, torch.Tensor):
        targets = targets.cpu().numpy()

    # un-normalise
    if np.max(images[0]) <= 1:
        images *= 255

    tl = 3  # line thickness
    tf = max(tl - 1, 1)  # font thickness
    bs, _, h, w = images.shape  # batch size, _, height, width
    bs = min(bs, max_subplots)  # limit plot images
    ns = np.ceil(bs ** 0.5)  # number of subplots (square)

    # Check if we should resize
    scale_factor = max_size / max(h, w)
    if scale_factor < 1:
        h = math.ceil(scale_factor * h)
        w = math.ceil(scale_factor * w)

    mosaic = np.full((int(ns * h), int(ns * w), 3), 255, dtype=np.uint8)  # init
    for i, img in enumerate(images):
        if i == max_subplots:  # if last batch has fewer images than we expect
            break

        block_x = int(w * (i // ns))
        block_y = int(h * (i % ns))

        img = img.transpose(1, 2, 0)
        if scale_factor < 1:
            img = cv2.resize(img, (w, h))

        mosaic[block_y:block_y + h, block_x:block_x + w, :] = img
        if len(targets) > 0:
            image_targets = targets[targets[:, 0] == i]
            boxes = xywh2xyxy(image_targets[:, 2:6]).T
            classes = image_targets[:, 1].astype('int')
            labels = image_targets.shape[1] == 6  # labels if no conf column
            conf = None if labels else image_targets[:, 6]  # check for confidence presence (label vs pred)

            if boxes.shape[1]:
                if boxes.max() <= 1.01:  # if normalized with tolerance 0.01
                    boxes[[0, 2]] *= w  # scale to pixels
                    boxes[[1, 3]] *= h
                elif scale_factor < 1:  # absolute coords need scale if image scales
                    boxes *= scale_factor
            boxes[[0, 2]] += block_x
            boxes[[1, 3]] += block_y
            for j, box in enumerate(boxes.T):
                cls = int(classes[j])
                color = colors(cls)
                cls = names[cls] if names else cls
                if labels or conf[j] > 0.25:  # 0.25 conf thresh
                    label = '%s' % cls if labels else '%s %.1f' % (cls, conf[j])
                    plot_one_box(box, mosaic, label=label, color=color, line_thickness=tl)

        # Draw image filename labels
        if paths:
            label = Path(paths[i]).name[:40]  # trim to 40 char
            t_size = cv2.getTextSize(label, 0, fontScale=tl / 3, thickness=tf)[0]
            cv2.putText(mosaic, label, (block_x + 5, block_y + t_size[1] + 5), 0, tl / 3, [220, 220, 220], thickness=tf,
                        lineType=cv2.LINE_AA)

        # Image border
        cv2.rectangle(mosaic, (block_x, block_y), (block_x + w, block_y + h), (255, 255, 255), thickness=3)

    if fname:
        r = min(1280. / max(h, w) / ns, 1.0)  # ratio to limit image size
        mosaic = cv2.resize(mosaic, (int(ns * w * r), int(ns * h * r)), interpolation=cv2.INTER_AREA)
        # cv2.imwrite(fname, cv2.cvtColor(mosaic, cv2.COLOR_BGR2RGB))  # cv2 save
        Image.fromarray(mosaic).save(fname)  # PIL save
    return mosaic


def plot_lr_scheduler(optimizer, scheduler, epochs=300, save_dir=''):
    # Plot LR simulating training for full epochs
    optimizer, scheduler = copy(optimizer), copy(scheduler)  # do not modify originals
    y = []
    for _ in range(epochs):
        scheduler.step()
        y.append(optimizer.param_groups[0]['lr'])
    plt.plot(y, '.-', label='LR')
    plt.xlabel('epoch')
    plt.ylabel('LR')
    plt.grid()
    plt.xlim(0, epochs)
    plt.ylim(0)
    plt.savefig(Path(save_dir) / 'LR.png', dpi=200)
    plt.close()


def plot_val_txt():  # from utils.plots import *; plot_val()
    # Plot val.txt histograms
    x = np.loadtxt('val.txt', dtype=np.float32)
    box = xyxy2xywh(x[:, :4])
    cx, cy = box[:, 0], box[:, 1]

    fig, ax = plt.subplots(1, 1, figsize=(6, 6), tight_layout=True)
    ax.hist2d(cx, cy, bins=600, cmax=10, cmin=0)
    ax.set_aspect('equal')
    plt.savefig('hist2d.png', dpi=300)

    fig, ax = plt.subplots(1, 2, figsize=(12, 6), tight_layout=True)
    ax[0].hist(cx, bins=600)
    ax[1].hist(cy, bins=600)
    plt.savefig('hist1d.png', dpi=200)


def plot_targets_txt():  # from utils.plots import *; plot_targets_txt()
    # Plot targets.txt histograms
    x = np.loadtxt('targets.txt', dtype=np.float32).T
    s = ['x targets', 'y targets', 'width targets', 'height targets']
    fig, ax = plt.subplots(2, 2, figsize=(8, 8), tight_layout=True)
    ax = ax.ravel()
    for i in range(4):
        ax[i].hist(x[i], bins=100, label='%.3g +/- %.3g' % (x[i].mean(), x[i].std()))
        ax[i].legend()
        ax[i].set_title(s[i])
    plt.savefig('targets.jpg', dpi=200)


def plot_study_txt(path='', x=None):  # from utils.plots import *; plot_study_txt()
    # Plot study.txt generated by val.py
    plot2 = False  # plot additional results
    if plot2:
        ax = plt.subplots(2, 4, figsize=(10, 6), tight_layout=True)[1].ravel()

    fig2, ax2 = plt.subplots(1, 1, figsize=(8, 4), tight_layout=True)
    # for f in [Path(path) / f'study_coco_{x}.txt' for x in ['yolov5s6', 'yolov5m6', 'yolov5l6', 'yolov5x6']]:
    for f in sorted(Path(path).glob('study*.txt')):
        y = np.loadtxt(f, dtype=np.float32, usecols=[0, 1, 2, 3, 7, 8, 9], ndmin=2).T
        x = np.arange(y.shape[1]) if x is None else np.array(x)
        if plot2:
            s = ['P', 'R', '[email protected]', '[email protected]:.95', 't_preprocess (ms/img)', 't_inference (ms/img)', 't_NMS (ms/img)']
            for i in range(7):
                ax[i].plot(x, y[i], '.-', linewidth=2, markersize=8)
                ax[i].set_title(s[i])

        j = y[3].argmax() + 1
        ax2.plot(y[5, 1:j], y[3, 1:j] * 1E2, '.-', linewidth=2, markersize=8,
                 label=f.stem.replace('study_coco_', '').replace('yolo', 'YOLO'))

    ax2.plot(1E3 / np.array([209, 140, 97, 58, 35, 18]), [34.6, 40.5, 43.0, 47.5, 49.7, 51.5],
             'k.-', linewidth=2, markersize=8, alpha=.25, label='EfficientDet')

    ax2.grid(alpha=0.2)
    ax2.set_yticks(np.arange(20, 60, 5))
    ax2.set_xlim(0, 57)
    ax2.set_ylim(30, 55)
    ax2.set_xlabel('GPU Speed (ms/img)')
    ax2.set_ylabel('COCO AP val')
    ax2.legend(loc='lower right')
    plt.savefig(str(Path(path).name) + '.png', dpi=300)


def plot_labels(labels, names=(), save_dir=Path(''), loggers=None):
    # plot dataset labels
    print('Plotting labels... ')
    c, b = labels[:, 0], labels[:, 1:].transpose()  # classes, boxes
    nc = int(c.max() + 1)  # number of classes
    x = pd.DataFrame(b.transpose(), columns=['x', 'y', 'width', 'height'])

    # seaborn correlogram
    sn.pairplot(x, corner=True, diag_kind='auto', kind='hist', diag_kws=dict(bins=50), plot_kws=dict(pmax=0.9))
    plt.savefig(save_dir / 'labels_correlogram.jpg', dpi=200)
    plt.close()

    # matplotlib labels
    matplotlib.use('svg')  # faster
    ax = plt.subplots(2, 2, figsize=(8, 8), tight_layout=True)[1].ravel()
    y = ax[0].hist(c, bins=np.linspace(0, nc, nc + 1) - 0.5, rwidth=0.8)
    # [y[2].patches[i].set_color([x / 255 for x in colors(i)]) for i in range(nc)]  # update colors bug #3195
    ax[0].set_ylabel('instances')
    if 0 < len(names) < 30:
        ax[0].set_xticks(range(len(names)))
        ax[0].set_xticklabels(names, rotation=90, fontsize=10)
    else:
        ax[0].set_xlabel('classes')
    sn.histplot(x, x='x', y='y', ax=ax[2], bins=50, pmax=0.9)
    sn.histplot(x, x='width', y='height', ax=ax[3], bins=50, pmax=0.9)

    # rectangles
    labels[:, 1:3] = 0.5  # center
    labels[:, 1:] = xywh2xyxy(labels[:, 1:]) * 2000
    img = Image.fromarray(np.ones((2000, 2000, 3), dtype=np.uint8) * 255)
    for cls, *box in labels[:1000]:
        ImageDraw.Draw(img).rectangle(box, width=1, outline=colors(cls))  # plot
    ax[1].imshow(img)
    ax[1].axis('off')

    for a in [0, 1, 2, 3]:
        for s in ['top', 'right', 'left', 'bottom']:
            ax[a].spines[s].set_visible(False)

    plt.savefig(save_dir / 'labels.jpg', dpi=200)
    matplotlib.use('Agg')
    plt.close()

    # loggers
    if loggers:
        loggers.log_images(save_dir.glob('*labels*.jpg'))


def plot_evolution(yaml_file='data/hyp.finetune.yaml'):  # from utils.plots import *; plot_evolution()
    # Plot hyperparameter evolution results in evolve.txt
    with open(yaml_file) as f:
        hyp = yaml.safe_load(f)
    x = np.loadtxt('evolve.txt', ndmin=2)
    f = fitness(x)
    # weights = (f - f.min()) ** 2  # for weighted results
    plt.figure(figsize=(10, 12), tight_layout=True)
    matplotlib.rc('font', **{'size': 8})
    for i, (k, v) in enumerate(hyp.items()):
        y = x[:, i + 7]
        # mu = (y * weights).sum() / weights.sum()  # best weighted result
        mu = y[f.argmax()]  # best single result
        plt.subplot(6, 5, i + 1)
        plt.scatter(y, f, c=hist2d(y, f, 20), cmap='viridis', alpha=.8, edgecolors='none')
        plt.plot(mu, f.max(), 'k+', markersize=15)
        plt.title('%s = %.3g' % (k, mu), fontdict={'size': 9})  # limit to 40 characters
        if i % 5 != 0:
            plt.yticks([])
        print('%15s: %.3g' % (k, mu))
    plt.savefig('evolve.png', dpi=200)
    print('\nPlot saved as evolve.png')


def profile_idetection(start=0, stop=0, labels=(), save_dir=''):
    # Plot iDetection '*.txt' per-image logs. from utils.plots import *; profile_idetection()
    ax = plt.subplots(2, 4, figsize=(12, 6), tight_layout=True)[1].ravel()
    s = ['Images', 'Free Storage (GB)', 'RAM Usage (GB)', 'Battery', 'dt_raw (ms)', 'dt_smooth (ms)', 'real-world FPS']
    files = list(Path(save_dir).glob('frames*.txt'))
    for fi, f in enumerate(files):
        try:
            results = np.loadtxt(f, ndmin=2).T[:, 90:-30]  # clip first and last rows
            n = results.shape[1]  # number of rows
            x = np.arange(start, min(stop, n) if stop else n)
            results = results[:, x]
            t = (results[0] - results[0].min())  # set t0=0s
            results[0] = x
            for i, a in enumerate(ax):
                if i < len(results):
                    label = labels[fi] if len(labels) else f.stem.replace('frames_', '')
                    a.plot(t, results[i], marker='.', label=label, linewidth=1, markersize=5)
                    a.set_title(s[i])
                    a.set_xlabel('time (s)')
                    # if fi == len(files) - 1:
                    #     a.set_ylim(bottom=0)
                    for side in ['top', 'right']:
                        a.spines[side].set_visible(False)
                else:
                    a.remove()
        except Exception as e:
            print('Warning: Plotting error for %s; %s' % (f, e))

    ax[1].legend()
    plt.savefig(Path(save_dir) / 'idetection_profile.png', dpi=200)


def plot_results(file='', dir=''):
    # Plot training results.csv. Usage: from utils.plots import *; plot_results('path/to/results.csv')
    save_dir = Path(file).parent if file else Path(dir)
    fig, ax = plt.subplots(2, 5, figsize=(12, 6), tight_layout=True)
    ax = ax.ravel()
    files = list(save_dir.glob('results*.csv'))
    assert len(files), f'No results.csv files found in {save_dir.resolve()}, nothing to plot.'
    for fi, f in enumerate(files):
        try:
            data = pd.read_csv(f)
            s = [x.strip() for x in data.columns]
            x = data.values[:, 0]
            for i, j in enumerate([1, 2, 3, 4, 5, 8, 9, 10, 6, 7]):
                y = data.values[:, j]
                # y[y == 0] = np.nan  # don't show zero values
                ax[i].plot(x, y, marker='.', label=f.stem, linewidth=2, markersize=8)
                ax[i].set_title(s[j], fontsize=12)
                # if j in [8, 9, 10]:  # share train and val loss y axes
                #     ax[i].get_shared_y_axes().join(ax[i], ax[i - 5])
        except Exception as e:
            print(f'Warning: Plotting error for {f}: {e}')
    ax[1].legend()
    fig.savefig(save_dir / 'results.png', dpi=200)


def feature_visualization(x, module_type, stage, n=32, save_dir=Path('runs/detect/exp')):
    """
    x:              Features to be visualized
    module_type:    Module type
    stage:          Module stage within model
    n:              Maximum number of feature maps to plot
    save_dir:       Directory to save results
    """
    if 'Detect' not in module_type:
        batch, channels, height, width = x.shape  # batch, channels, height, width
        if height > 1 and width > 1:
            f = f"stage{stage}_{module_type.split('.')[-1]}_features.png"  # filename

            blocks = torch.chunk(x[0].cpu(), channels, dim=0)  # select batch index 0, block by channels
            n = min(n, channels)  # number of plots
            fig, ax = plt.subplots(math.ceil(n / 8), 8, tight_layout=True)  # 8 rows x n/8 cols
            ax = ax.ravel()
            plt.subplots_adjust(wspace=0.05, hspace=0.05)
            for i in range(n):
                ax[i].imshow(blocks[i].squeeze())  # cmap='gray'
                ax[i].axis('off')

            print(f'Saving {save_dir / f}... ({n}/{channels})')
            plt.savefig(save_dir / f, dpi=300, bbox_inches='tight')