File size: 57,002 Bytes
1e84a23
 
 
 
 
 
 
 
 
 
 
 
 
 
9ac9ec3
 
 
62d77a1
9ac9ec3
 
b27f69f
9ac9ec3
 
 
 
 
 
 
 
 
62d77a1
9ac9ec3
 
62d77a1
 
 
9ac9ec3
 
 
62d77a1
9ac9ec3
 
b27f69f
9ac9ec3
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
62d77a1
4e65052
 
 
 
 
62d77a1
4e65052
 
 
 
 
 
 
 
 
 
 
62d77a1
4e65052
 
62d77a1
9ac9ec3
 
b27f69f
9ac9ec3
 
62d77a1
9ac9ec3
4e65052
9ac9ec3
 
083c13d
9ac9ec3
 
083c13d
9ac9ec3
 
 
 
 
 
62d77a1
9ac9ec3
 
62d77a1
9ac9ec3
 
b27f69f
9ac9ec3
 
62d77a1
9ac9ec3
 
 
 
 
 
62d77a1
9ac9ec3
 
 
 
62d77a1
9ac9ec3
 
62d77a1
9ac9ec3
 
b27f69f
9ac9ec3
 
 
 
 
 
 
 
 
 
 
62d77a1
9ac9ec3
 
b27f69f
9ac9ec3
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
62d77a1
9ac9ec3
 
b27f69f
9ac9ec3
 
 
4e65052
9ac9ec3
 
 
 
 
 
 
 
62d77a1
9ac9ec3
 
b27f69f
9ac9ec3
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
62d77a1
9ac9ec3
 
b27f69f
9ac9ec3
 
 
 
 
 
 
 
 
 
 
62d77a1
9ac9ec3
 
b27f69f
9ac9ec3
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1e84a23
 
 
 
 
 
 
 
 
d6ae1c8
1e84a23
 
 
 
 
5c32bd3
1e84a23
 
5c32bd3
6b19f72
1e84a23
bb0aed1
f3c3d2c
1e84a23
 
 
 
 
9ac9ec3
1e84a23
 
9d7c778
1e84a23
9ac9ec3
1e84a23
 
 
 
 
 
9d7c778
9ac9ec3
46c43b7
7ebb5e5
1e84a23
 
7ebb5e5
b545ee3
7ebb5e5
b545ee3
7d56d45
7ebb5e5
 
1e84a23
d6ae1c8
9d7c778
 
 
62d77a1
9d7c778
7ebb5e5
 
62d77a1
9d7c778
 
1e84a23
 
 
 
9ac9ec3
1e84a23
 
9d7c778
1e84a23
9029759
 
b27f69f
 
b8f979b
 
b27f69f
 
b8f979b
b27f69f
 
1e84a23
 
 
 
 
 
 
083c13d
46c43b7
62d77a1
1e84a23
 
62d77a1
7ebb5e5
1e84a23
7ebb5e5
1e84a23
 
 
62d77a1
1e84a23
62d77a1
 
1e84a23
9ac9ec3
62d77a1
 
 
 
 
 
1e84a23
 
 
083c13d
 
 
 
 
 
 
1a10b0e
083c13d
 
1e84a23
 
 
9ac9ec3
1e84a23
 
720aaa6
 
1e84a23
 
 
 
 
9ac9ec3
1e84a23
 
b760ace
9ac9ec3
1e84a23
 
 
 
 
 
 
 
4e65052
9ac9ec3
62d77a1
 
 
 
 
 
 
 
 
 
 
9ac9ec3
46c43b7
62d77a1
1e84a23
 
b760ace
 
bd88e7f
1e84a23
7ebb5e5
1e84a23
9ac9ec3
 
 
 
62d77a1
9ac9ec3
 
 
 
4e65052
9ac9ec3
 
62d77a1
1e84a23
 
 
 
 
 
b545ee3
 
9ac9ec3
46c43b7
62d77a1
1e84a23
 
b760ace
720aaa6
1e84a23
7ebb5e5
b545ee3
 
 
62d77a1
b545ee3
62d77a1
 
b545ee3
62d77a1
 
b545ee3
9ac9ec3
62d77a1
 
083c13d
62d77a1
 
 
9ac9ec3
720aaa6
b545ee3
4e65052
b545ee3
 
 
62d77a1
b545ee3
 
 
 
62d77a1
b545ee3
62d77a1
 
 
 
 
 
 
 
 
 
 
 
 
4e65052
62d77a1
b545ee3
 
1e84a23
 
 
 
9ac9ec3
1e84a23
 
b760ace
1b475c1
1e84a23
 
 
 
 
9ac9ec3
1e84a23
 
 
b760ace
79d8f1f
 
1e84a23
9d7c778
b545ee3
1e84a23
 
 
 
9ac9ec3
1e84a23
 
79d8f1f
 
1e84a23
9d7c778
1e84a23
 
 
 
 
cff7d2a
1e84a23
 
 
 
cce7e78
cff7d2a
 
3aeb57d
38c779b
 
 
3aeb57d
38c779b
 
cff7d2a
38c779b
 
 
 
 
 
 
 
3aeb57d
cff7d2a
9d7c778
 
1e84a23
 
 
9ac9ec3
1e84a23
 
9b91db6
1e84a23
8a81839
1e84a23
9d7c778
1e84a23
 
bcac052
 
 
 
 
 
9b91db6
 
 
 
bcac052
 
 
 
1e84a23
 
 
 
 
9ac9ec3
46c43b7
62d77a1
1e84a23
 
9ac9ec3
78cf488
1e84a23
7ebb5e5
1e84a23
 
 
62d77a1
1e84a23
62d77a1
3a42abd
62d77a1
083c13d
62d77a1
083c13d
 
9d7c778
 
62d77a1
9d7c778
3a42abd
9d7c778
62d77a1
9d7c778
4e65052
9d7c778
62d77a1
 
9d7c778
 
 
3a42abd
9d7c778
 
 
3a42abd
9ac9ec3
 
3a42abd
9ac9ec3
 
3a42abd
9ac9ec3
62d77a1
1e84a23
62d77a1
3a42abd
62d77a1
083c13d
62d77a1
 
4e65052
62d77a1
3a42abd
1e84a23
083c13d
720aaa6
1e84a23
62d77a1
9d7c778
1e84a23
083c13d
62d77a1
 
 
1e84a23
083c13d
62d77a1
 
 
1e84a23
083c13d
62d77a1
 
 
 
 
 
 
6b718e9
62d77a1
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
4e65052
62d77a1
1e84a23
 
 
bd5cfff
 
 
 
 
 
 
 
 
1e84a23
 
 
9ac9ec3
1e84a23
 
cf58130
9ac9ec3
877b826
9ac9ec3
877b826
9ac9ec3
1916226
1e84a23
 
 
 
 
9ac9ec3
1e84a23
 
bd5cfff
9ac9ec3
8acb573
3764277
bfad364
9cd4642
9ac9ec3
bfad364
720aaa6
9ac9ec3
bfad364
3764277
 
 
 
 
cf58130
3764277
 
 
1a10b0e
1e84a23
b545ee3
 
 
 
9ac9ec3
b545ee3
 
bd5cfff
9d7c778
9ac9ec3
9d7c778
eeb2bbf
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
720aaa6
b545ee3
 
 
9d7c778
b545ee3
9ac9ec3
b545ee3
 
9d7c778
 
 
 
b545ee3
 
 
 
9ac9ec3
b545ee3
 
73cf75f
fe6ebb9
7d56d45
720aaa6
b545ee3
9d7c778
b545ee3
 
877b826
 
 
 
 
 
 
 
 
 
 
 
 
ee76a68
877b826
 
 
 
 
 
 
 
 
b545ee3
 
 
9ac9ec3
b545ee3
 
e83792e
b545ee3
46c43b7
d81bc47
62d77a1
 
 
46c43b7
720aaa6
 
62d77a1
 
9d7c778
62d77a1
 
 
 
b545ee3
 
9d7c778
b545ee3
b7007d0
bc52ea2
 
 
 
 
 
 
d8f1883
bc52ea2
 
 
d8f1883
bc52ea2
 
 
 
095d2c1
 
 
 
 
 
 
 
 
 
 
 
 
b7007d0
 
 
 
 
 
 
 
f79d747
b7007d0
 
 
d6ae1c8
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1e84a23
 
f17c86b
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
{
  "nbformat": 4,
  "nbformat_minor": 0,
  "metadata": {
    "colab": {
      "name": "YOLOv5 Tutorial",
      "provenance": [],
      "collapsed_sections": [],
      "include_colab_link": true
    },
    "kernelspec": {
      "name": "python3",
      "display_name": "Python 3"
    },
    "accelerator": "GPU",
    "widgets": {
      "application/vnd.jupyter.widget-state+json": {
        "eb95db7cae194218b3fcefb439b6352f": {
          "model_module": "@jupyter-widgets/controls",
          "model_name": "HBoxModel",
          "model_module_version": "1.5.0",
          "state": {
            "_view_name": "HBoxView",
            "_dom_classes": [],
            "_model_name": "HBoxModel",
            "_view_module": "@jupyter-widgets/controls",
            "_model_module_version": "1.5.0",
            "_view_count": null,
            "_view_module_version": "1.5.0",
            "box_style": "",
            "layout": "IPY_MODEL_769ecde6f2e64bacb596ce972f8d3d2d",
            "_model_module": "@jupyter-widgets/controls",
            "children": [
              "IPY_MODEL_384a001876054c93b0af45cd1e960bfe",
              "IPY_MODEL_dded0aeae74440f7ba2ffa0beb8dd612",
              "IPY_MODEL_5296d28be75740b2892ae421bbec3657"
            ]
          }
        },
        "769ecde6f2e64bacb596ce972f8d3d2d": {
          "model_module": "@jupyter-widgets/base",
          "model_name": "LayoutModel",
          "model_module_version": "1.2.0",
          "state": {
            "_view_name": "LayoutView",
            "grid_template_rows": null,
            "right": null,
            "justify_content": null,
            "_view_module": "@jupyter-widgets/base",
            "overflow": null,
            "_model_module_version": "1.2.0",
            "_view_count": null,
            "flex_flow": null,
            "width": null,
            "min_width": null,
            "border": null,
            "align_items": null,
            "bottom": null,
            "_model_module": "@jupyter-widgets/base",
            "top": null,
            "grid_column": null,
            "overflow_y": null,
            "overflow_x": null,
            "grid_auto_flow": null,
            "grid_area": null,
            "grid_template_columns": null,
            "flex": null,
            "_model_name": "LayoutModel",
            "justify_items": null,
            "grid_row": null,
            "max_height": null,
            "align_content": null,
            "visibility": null,
            "align_self": null,
            "height": null,
            "min_height": null,
            "padding": null,
            "grid_auto_rows": null,
            "grid_gap": null,
            "max_width": null,
            "order": null,
            "_view_module_version": "1.2.0",
            "grid_template_areas": null,
            "object_position": null,
            "object_fit": null,
            "grid_auto_columns": null,
            "margin": null,
            "display": null,
            "left": null
          }
        },
        "384a001876054c93b0af45cd1e960bfe": {
          "model_module": "@jupyter-widgets/controls",
          "model_name": "HTMLModel",
          "model_module_version": "1.5.0",
          "state": {
            "_view_name": "HTMLView",
            "style": "IPY_MODEL_9f09facb2a6c4a7096810d327c8b551c",
            "_dom_classes": [],
            "description": "",
            "_model_name": "HTMLModel",
            "placeholder": "​",
            "_view_module": "@jupyter-widgets/controls",
            "_model_module_version": "1.5.0",
            "value": "100%",
            "_view_count": null,
            "_view_module_version": "1.5.0",
            "description_tooltip": null,
            "_model_module": "@jupyter-widgets/controls",
            "layout": "IPY_MODEL_25621cff5d16448cb7260e839fd0f543"
          }
        },
        "dded0aeae74440f7ba2ffa0beb8dd612": {
          "model_module": "@jupyter-widgets/controls",
          "model_name": "FloatProgressModel",
          "model_module_version": "1.5.0",
          "state": {
            "_view_name": "ProgressView",
            "style": "IPY_MODEL_0ce7164fc0c74bb9a2b5c7037375a727",
            "_dom_classes": [],
            "description": "",
            "_model_name": "FloatProgressModel",
            "bar_style": "success",
            "max": 818322941,
            "_view_module": "@jupyter-widgets/controls",
            "_model_module_version": "1.5.0",
            "value": 818322941,
            "_view_count": null,
            "_view_module_version": "1.5.0",
            "orientation": "horizontal",
            "min": 0,
            "description_tooltip": null,
            "_model_module": "@jupyter-widgets/controls",
            "layout": "IPY_MODEL_c4c4593c10904cb5b8a5724d60c7e181"
          }
        },
        "5296d28be75740b2892ae421bbec3657": {
          "model_module": "@jupyter-widgets/controls",
          "model_name": "HTMLModel",
          "model_module_version": "1.5.0",
          "state": {
            "_view_name": "HTMLView",
            "style": "IPY_MODEL_473371611126476c88d5d42ec7031ed6",
            "_dom_classes": [],
            "description": "",
            "_model_name": "HTMLModel",
            "placeholder": "​",
            "_view_module": "@jupyter-widgets/controls",
            "_model_module_version": "1.5.0",
            "value": " 780M/780M [00:11<00:00, 91.9MB/s]",
            "_view_count": null,
            "_view_module_version": "1.5.0",
            "description_tooltip": null,
            "_model_module": "@jupyter-widgets/controls",
            "layout": "IPY_MODEL_65efdfd0d26c46e79c8c5ff3b77126cc"
          }
        },
        "9f09facb2a6c4a7096810d327c8b551c": {
          "model_module": "@jupyter-widgets/controls",
          "model_name": "DescriptionStyleModel",
          "model_module_version": "1.5.0",
          "state": {
            "_view_name": "StyleView",
            "_model_name": "DescriptionStyleModel",
            "description_width": "",
            "_view_module": "@jupyter-widgets/base",
            "_model_module_version": "1.5.0",
            "_view_count": null,
            "_view_module_version": "1.2.0",
            "_model_module": "@jupyter-widgets/controls"
          }
        },
        "25621cff5d16448cb7260e839fd0f543": {
          "model_module": "@jupyter-widgets/base",
          "model_name": "LayoutModel",
          "model_module_version": "1.2.0",
          "state": {
            "_view_name": "LayoutView",
            "grid_template_rows": null,
            "right": null,
            "justify_content": null,
            "_view_module": "@jupyter-widgets/base",
            "overflow": null,
            "_model_module_version": "1.2.0",
            "_view_count": null,
            "flex_flow": null,
            "width": null,
            "min_width": null,
            "border": null,
            "align_items": null,
            "bottom": null,
            "_model_module": "@jupyter-widgets/base",
            "top": null,
            "grid_column": null,
            "overflow_y": null,
            "overflow_x": null,
            "grid_auto_flow": null,
            "grid_area": null,
            "grid_template_columns": null,
            "flex": null,
            "_model_name": "LayoutModel",
            "justify_items": null,
            "grid_row": null,
            "max_height": null,
            "align_content": null,
            "visibility": null,
            "align_self": null,
            "height": null,
            "min_height": null,
            "padding": null,
            "grid_auto_rows": null,
            "grid_gap": null,
            "max_width": null,
            "order": null,
            "_view_module_version": "1.2.0",
            "grid_template_areas": null,
            "object_position": null,
            "object_fit": null,
            "grid_auto_columns": null,
            "margin": null,
            "display": null,
            "left": null
          }
        },
        "0ce7164fc0c74bb9a2b5c7037375a727": {
          "model_module": "@jupyter-widgets/controls",
          "model_name": "ProgressStyleModel",
          "model_module_version": "1.5.0",
          "state": {
            "_view_name": "StyleView",
            "_model_name": "ProgressStyleModel",
            "description_width": "",
            "_view_module": "@jupyter-widgets/base",
            "_model_module_version": "1.5.0",
            "_view_count": null,
            "_view_module_version": "1.2.0",
            "bar_color": null,
            "_model_module": "@jupyter-widgets/controls"
          }
        },
        "c4c4593c10904cb5b8a5724d60c7e181": {
          "model_module": "@jupyter-widgets/base",
          "model_name": "LayoutModel",
          "model_module_version": "1.2.0",
          "state": {
            "_view_name": "LayoutView",
            "grid_template_rows": null,
            "right": null,
            "justify_content": null,
            "_view_module": "@jupyter-widgets/base",
            "overflow": null,
            "_model_module_version": "1.2.0",
            "_view_count": null,
            "flex_flow": null,
            "width": null,
            "min_width": null,
            "border": null,
            "align_items": null,
            "bottom": null,
            "_model_module": "@jupyter-widgets/base",
            "top": null,
            "grid_column": null,
            "overflow_y": null,
            "overflow_x": null,
            "grid_auto_flow": null,
            "grid_area": null,
            "grid_template_columns": null,
            "flex": null,
            "_model_name": "LayoutModel",
            "justify_items": null,
            "grid_row": null,
            "max_height": null,
            "align_content": null,
            "visibility": null,
            "align_self": null,
            "height": null,
            "min_height": null,
            "padding": null,
            "grid_auto_rows": null,
            "grid_gap": null,
            "max_width": null,
            "order": null,
            "_view_module_version": "1.2.0",
            "grid_template_areas": null,
            "object_position": null,
            "object_fit": null,
            "grid_auto_columns": null,
            "margin": null,
            "display": null,
            "left": null
          }
        },
        "473371611126476c88d5d42ec7031ed6": {
          "model_module": "@jupyter-widgets/controls",
          "model_name": "DescriptionStyleModel",
          "model_module_version": "1.5.0",
          "state": {
            "_view_name": "StyleView",
            "_model_name": "DescriptionStyleModel",
            "description_width": "",
            "_view_module": "@jupyter-widgets/base",
            "_model_module_version": "1.5.0",
            "_view_count": null,
            "_view_module_version": "1.2.0",
            "_model_module": "@jupyter-widgets/controls"
          }
        },
        "65efdfd0d26c46e79c8c5ff3b77126cc": {
          "model_module": "@jupyter-widgets/base",
          "model_name": "LayoutModel",
          "model_module_version": "1.2.0",
          "state": {
            "_view_name": "LayoutView",
            "grid_template_rows": null,
            "right": null,
            "justify_content": null,
            "_view_module": "@jupyter-widgets/base",
            "overflow": null,
            "_model_module_version": "1.2.0",
            "_view_count": null,
            "flex_flow": null,
            "width": null,
            "min_width": null,
            "border": null,
            "align_items": null,
            "bottom": null,
            "_model_module": "@jupyter-widgets/base",
            "top": null,
            "grid_column": null,
            "overflow_y": null,
            "overflow_x": null,
            "grid_auto_flow": null,
            "grid_area": null,
            "grid_template_columns": null,
            "flex": null,
            "_model_name": "LayoutModel",
            "justify_items": null,
            "grid_row": null,
            "max_height": null,
            "align_content": null,
            "visibility": null,
            "align_self": null,
            "height": null,
            "min_height": null,
            "padding": null,
            "grid_auto_rows": null,
            "grid_gap": null,
            "max_width": null,
            "order": null,
            "_view_module_version": "1.2.0",
            "grid_template_areas": null,
            "object_position": null,
            "object_fit": null,
            "grid_auto_columns": null,
            "margin": null,
            "display": null,
            "left": null
          }
        }
      }
    }
  },
  "cells": [
    {
      "cell_type": "markdown",
      "metadata": {
        "id": "view-in-github",
        "colab_type": "text"
      },
      "source": [
        "<a href=\"https://colab.research.google.com/github/ultralytics/yolov5/blob/master/tutorial.ipynb\" target=\"_parent\"><img src=\"https://colab.research.google.com/assets/colab-badge.svg\" alt=\"Open In Colab\"/></a>"
      ]
    },
    {
      "cell_type": "markdown",
      "metadata": {
        "id": "t6MPjfT5NrKQ"
      },
      "source": [
        "<a align=\"left\" href=\"https://ultralytics.com/yolov5\" target=\"_blank\">\n",
        "<img width=\"1024\", src=\"https://user-images.githubusercontent.com/26833433/125273437-35b3fc00-e30d-11eb-9079-46f313325424.png\"></a>\n",
        "\n",
        "This is the **official YOLOv5 🚀 notebook** by **Ultralytics**, and is freely available for redistribution under the [GPL-3.0 license](https://choosealicense.com/licenses/gpl-3.0/). \n",
        "For more information please visit https://github.com/ultralytics/yolov5 and https://ultralytics.com. Thank you!"
      ]
    },
    {
      "cell_type": "markdown",
      "metadata": {
        "id": "7mGmQbAO5pQb"
      },
      "source": [
        "# Setup\n",
        "\n",
        "Clone repo, install dependencies and check PyTorch and GPU."
      ]
    },
    {
      "cell_type": "code",
      "metadata": {
        "id": "wbvMlHd_QwMG",
        "colab": {
          "base_uri": "https://localhost:8080/"
        },
        "outputId": "3809e5a9-dd41-4577-fe62-5531abf7cca2"
      },
      "source": [
        "!git clone https://github.com/ultralytics/yolov5  # clone\n",
        "%cd yolov5\n",
        "%pip install -qr requirements.txt  # install\n",
        "\n",
        "import torch\n",
        "from yolov5 import utils\n",
        "display = utils.notebook_init()  # checks"
      ],
      "execution_count": null,
      "outputs": [
        {
          "output_type": "stream",
          "name": "stdout",
          "text": [
            "YOLOv5 🚀 v6.0-48-g84a8099 torch 1.10.0+cu102 CUDA:0 (Tesla V100-SXM2-16GB, 16160MiB)\n",
            "Setup complete ✅\n"
          ]
        }
      ]
    },
    {
      "cell_type": "markdown",
      "metadata": {
        "id": "4JnkELT0cIJg"
      },
      "source": [
        "# 1. Inference\n",
        "\n",
        "`detect.py` runs YOLOv5 inference on a variety of sources, downloading models automatically from the [latest YOLOv5 release](https://github.com/ultralytics/yolov5/releases), and saving results to `runs/detect`. Example inference sources are:\n",
        "\n",
        "```shell\n",
        "python detect.py --source 0  # webcam\n",
        "                          img.jpg  # image \n",
        "                          vid.mp4  # video\n",
        "                          path/  # directory\n",
        "                          path/*.jpg  # glob\n",
        "                          'https://youtu.be/Zgi9g1ksQHc'  # YouTube\n",
        "                          'rtsp://example.com/media.mp4'  # RTSP, RTMP, HTTP stream\n",
        "```"
      ]
    },
    {
      "cell_type": "code",
      "metadata": {
        "id": "zR9ZbuQCH7FX",
        "colab": {
          "base_uri": "https://localhost:8080/"
        },
        "outputId": "8f7e6588-215d-4ebd-93af-88b871e770a7"
      },
      "source": [
        "!python detect.py --weights yolov5s.pt --img 640 --conf 0.25 --source data/images\n",
        "display.Image(filename='runs/detect/exp/zidane.jpg', width=600)"
      ],
      "execution_count": null,
      "outputs": [
        {
          "output_type": "stream",
          "name": "stdout",
          "text": [
            "\u001b[34m\u001b[1mdetect: \u001b[0mweights=['yolov5s.pt'], source=data/images, imgsz=[640, 640], conf_thres=0.25, iou_thres=0.45, max_det=1000, device=, view_img=False, save_txt=False, save_conf=False, save_crop=False, nosave=False, classes=None, agnostic_nms=False, augment=False, visualize=False, update=False, project=runs/detect, name=exp, exist_ok=False, line_thickness=3, hide_labels=False, hide_conf=False, half=False, dnn=False\n",
            "YOLOv5 🚀 v6.0-48-g84a8099 torch 1.10.0+cu102 CUDA:0 (Tesla V100-SXM2-16GB, 16160MiB)\n",
            "\n",
            "Fusing layers... \n",
            "Model Summary: 213 layers, 7225885 parameters, 0 gradients\n",
            "image 1/2 /content/yolov5/data/images/bus.jpg: 640x480 4 persons, 1 bus, Done. (0.007s)\n",
            "image 2/2 /content/yolov5/data/images/zidane.jpg: 384x640 2 persons, 1 tie, Done. (0.007s)\n",
            "Speed: 0.5ms pre-process, 6.9ms inference, 1.3ms NMS per image at shape (1, 3, 640, 640)\n",
            "Results saved to \u001b[1mruns/detect/exp\u001b[0m\n"
          ]
        }
      ]
    },
    {
      "cell_type": "markdown",
      "metadata": {
        "id": "hkAzDWJ7cWTr"
      },
      "source": [
        "&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;\n",
        "<img align=\"left\" src=\"https://user-images.githubusercontent.com/26833433/127574988-6a558aa1-d268-44b9-bf6b-62d4c605cc72.jpg\" width=\"600\">"
      ]
    },
    {
      "cell_type": "markdown",
      "metadata": {
        "id": "0eq1SMWl6Sfn"
      },
      "source": [
        "# 2. Validate\n",
        "Validate a model's accuracy on [COCO](https://cocodataset.org/#home) val or test-dev datasets. Models are downloaded automatically from the [latest YOLOv5 release](https://github.com/ultralytics/yolov5/releases). To show results by class use the `--verbose` flag. Note that `pycocotools` metrics may be ~1% better than the equivalent repo metrics, as is visible below, due to slight differences in mAP computation."
      ]
    },
    {
      "cell_type": "markdown",
      "metadata": {
        "id": "eyTZYGgRjnMc"
      },
      "source": [
        "## COCO val\n",
        "Download [COCO val 2017](https://github.com/ultralytics/yolov5/blob/74b34872fdf41941cddcf243951cdb090fbac17b/data/coco.yaml#L14) dataset (1GB - 5000 images), and test model accuracy."
      ]
    },
    {
      "cell_type": "code",
      "metadata": {
        "id": "WQPtK1QYVaD_",
        "colab": {
          "base_uri": "https://localhost:8080/",
          "height": 48,
          "referenced_widgets": [
            "eb95db7cae194218b3fcefb439b6352f",
            "769ecde6f2e64bacb596ce972f8d3d2d",
            "384a001876054c93b0af45cd1e960bfe",
            "dded0aeae74440f7ba2ffa0beb8dd612",
            "5296d28be75740b2892ae421bbec3657",
            "9f09facb2a6c4a7096810d327c8b551c",
            "25621cff5d16448cb7260e839fd0f543",
            "0ce7164fc0c74bb9a2b5c7037375a727",
            "c4c4593c10904cb5b8a5724d60c7e181",
            "473371611126476c88d5d42ec7031ed6",
            "65efdfd0d26c46e79c8c5ff3b77126cc"
          ]
        },
        "outputId": "bcf9a448-1f9b-4a41-ad49-12f181faf05a"
      },
      "source": [
        "# Download COCO val\n",
        "torch.hub.download_url_to_file('https://ultralytics.com/assets/coco2017val.zip', 'tmp.zip')\n",
        "!unzip -q tmp.zip -d ../datasets && rm tmp.zip"
      ],
      "execution_count": null,
      "outputs": [
        {
          "output_type": "display_data",
          "data": {
            "application/vnd.jupyter.widget-view+json": {
              "model_id": "eb95db7cae194218b3fcefb439b6352f",
              "version_minor": 0,
              "version_major": 2
            },
            "text/plain": [
              "  0%|          | 0.00/780M [00:00<?, ?B/s]"
            ]
          },
          "metadata": {}
        }
      ]
    },
    {
      "cell_type": "code",
      "metadata": {
        "id": "X58w8JLpMnjH",
        "colab": {
          "base_uri": "https://localhost:8080/"
        },
        "outputId": "74f1dfa9-6b6d-4b36-f67e-bbae243869f9"
      },
      "source": [
        "# Run YOLOv5x on COCO val\n",
        "!python val.py --weights yolov5x.pt --data coco.yaml --img 640 --iou 0.65 --half"
      ],
      "execution_count": null,
      "outputs": [
        {
          "output_type": "stream",
          "name": "stdout",
          "text": [
            "\u001b[34m\u001b[1mval: \u001b[0mdata=/content/yolov5/data/coco.yaml, weights=['yolov5x.pt'], batch_size=32, imgsz=640, conf_thres=0.001, iou_thres=0.65, task=val, device=, single_cls=False, augment=False, verbose=False, save_txt=False, save_hybrid=False, save_conf=False, save_json=True, project=runs/val, name=exp, exist_ok=False, half=True\n",
            "YOLOv5 🚀 v6.0-48-g84a8099 torch 1.10.0+cu102 CUDA:0 (Tesla V100-SXM2-16GB, 16160MiB)\n",
            "\n",
            "Downloading https://github.com/ultralytics/yolov5/releases/download/v6.0/yolov5x.pt to yolov5x.pt...\n",
            "100% 166M/166M [00:03<00:00, 54.1MB/s]\n",
            "\n",
            "Fusing layers... \n",
            "Model Summary: 444 layers, 86705005 parameters, 0 gradients\n",
            "\u001b[34m\u001b[1mval: \u001b[0mScanning '../datasets/coco/val2017' images and labels...4952 found, 48 missing, 0 empty, 0 corrupted: 100% 5000/5000 [00:01<00:00, 2636.64it/s]\n",
            "\u001b[34m\u001b[1mval: \u001b[0mNew cache created: ../datasets/coco/val2017.cache\n",
            "               Class     Images     Labels          P          R     [email protected] [email protected]:.95: 100% 157/157 [01:12<00:00,  2.17it/s]\n",
            "                 all       5000      36335      0.729       0.63      0.683      0.496\n",
            "Speed: 0.1ms pre-process, 4.9ms inference, 1.9ms NMS per image at shape (32, 3, 640, 640)\n",
            "\n",
            "Evaluating pycocotools mAP... saving runs/val/exp/yolov5x_predictions.json...\n",
            "loading annotations into memory...\n",
            "Done (t=0.46s)\n",
            "creating index...\n",
            "index created!\n",
            "Loading and preparing results...\n",
            "DONE (t=5.15s)\n",
            "creating index...\n",
            "index created!\n",
            "Running per image evaluation...\n",
            "Evaluate annotation type *bbox*\n",
            "DONE (t=90.39s).\n",
            "Accumulating evaluation results...\n",
            "DONE (t=14.54s).\n",
            " Average Precision  (AP) @[ IoU=0.50:0.95 | area=   all | maxDets=100 ] = 0.507\n",
            " Average Precision  (AP) @[ IoU=0.50      | area=   all | maxDets=100 ] = 0.689\n",
            " Average Precision  (AP) @[ IoU=0.75      | area=   all | maxDets=100 ] = 0.552\n",
            " Average Precision  (AP) @[ IoU=0.50:0.95 | area= small | maxDets=100 ] = 0.345\n",
            " Average Precision  (AP) @[ IoU=0.50:0.95 | area=medium | maxDets=100 ] = 0.559\n",
            " Average Precision  (AP) @[ IoU=0.50:0.95 | area= large | maxDets=100 ] = 0.652\n",
            " Average Recall     (AR) @[ IoU=0.50:0.95 | area=   all | maxDets=  1 ] = 0.381\n",
            " Average Recall     (AR) @[ IoU=0.50:0.95 | area=   all | maxDets= 10 ] = 0.630\n",
            " Average Recall     (AR) @[ IoU=0.50:0.95 | area=   all | maxDets=100 ] = 0.682\n",
            " Average Recall     (AR) @[ IoU=0.50:0.95 | area= small | maxDets=100 ] = 0.526\n",
            " Average Recall     (AR) @[ IoU=0.50:0.95 | area=medium | maxDets=100 ] = 0.732\n",
            " Average Recall     (AR) @[ IoU=0.50:0.95 | area= large | maxDets=100 ] = 0.829\n",
            "Results saved to \u001b[1mruns/val/exp\u001b[0m\n"
          ]
        }
      ]
    },
    {
      "cell_type": "markdown",
      "metadata": {
        "id": "rc_KbFk0juX2"
      },
      "source": [
        "## COCO test\n",
        "Download [COCO test2017](https://github.com/ultralytics/yolov5/blob/74b34872fdf41941cddcf243951cdb090fbac17b/data/coco.yaml#L15) dataset (7GB - 40,000 images), to test model accuracy on test-dev set (**20,000 images, no labels**). Results are saved to a `*.json` file which should be **zipped** and submitted to the evaluation server at https://competitions.codalab.org/competitions/20794."
      ]
    },
    {
      "cell_type": "code",
      "metadata": {
        "id": "V0AJnSeCIHyJ"
      },
      "source": [
        "# Download COCO test-dev2017\n",
        "torch.hub.download_url_to_file('https://ultralytics.com/assets/coco2017labels.zip', 'tmp.zip')\n",
        "!unzip -q tmp.zip -d ../datasets && rm tmp.zip\n",
        "!f=\"test2017.zip\" && curl http://images.cocodataset.org/zips/$f -o $f && unzip -q $f -d ../datasets/coco/images"
      ],
      "execution_count": null,
      "outputs": []
    },
    {
      "cell_type": "code",
      "metadata": {
        "id": "29GJXAP_lPrt"
      },
      "source": [
        "# Run YOLOv5x on COCO test\n",
        "!python val.py --weights yolov5x.pt --data coco.yaml --img 640 --iou 0.65 --half --task test"
      ],
      "execution_count": null,
      "outputs": []
    },
    {
      "cell_type": "markdown",
      "metadata": {
        "id": "ZY2VXXXu74w5"
      },
      "source": [
        "# 3. Train\n",
        "\n",
        "<p align=\"\"><a href=\"https://roboflow.com/?ref=ultralytics\"><img width=\"1000\" src=\"https://uploads-ssl.webflow.com/5f6bc60e665f54545a1e52a5/615627e5824c9c6195abfda9_computer-vision-cycle.png\"/></a></p>\n",
        "Close the active learning loop by sampling images from your inference conditions with the `roboflow` pip package\n",
        "<br><br>\n",
        "\n",
        "Train a YOLOv5s model on the [COCO128](https://www.kaggle.com/ultralytics/coco128) dataset with `--data coco128.yaml`, starting from pretrained `--weights yolov5s.pt`, or from randomly initialized `--weights '' --cfg yolov5s.yaml`.\n",
        "\n",
        "- **Pretrained [Models](https://github.com/ultralytics/yolov5/tree/master/models)** are downloaded\n",
        "automatically from the [latest YOLOv5 release](https://github.com/ultralytics/yolov5/releases)\n",
        "- **[Datasets](https://github.com/ultralytics/yolov5/tree/master/data)** available for autodownload include: [COCO](https://github.com/ultralytics/yolov5/blob/master/data/coco.yaml), [COCO128](https://github.com/ultralytics/yolov5/blob/master/data/coco128.yaml), [VOC](https://github.com/ultralytics/yolov5/blob/master/data/VOC.yaml), [Argoverse](https://github.com/ultralytics/yolov5/blob/master/data/Argoverse.yaml), [VisDrone](https://github.com/ultralytics/yolov5/blob/master/data/VisDrone.yaml), [GlobalWheat](https://github.com/ultralytics/yolov5/blob/master/data/GlobalWheat2020.yaml), [xView](https://github.com/ultralytics/yolov5/blob/master/data/xView.yaml), [Objects365](https://github.com/ultralytics/yolov5/blob/master/data/Objects365.yaml), [SKU-110K](https://github.com/ultralytics/yolov5/blob/master/data/SKU-110K.yaml).\n",
        "- **Training Results** are saved to `runs/train/` with incrementing run directories, i.e. `runs/train/exp2`, `runs/train/exp3` etc.\n",
        "<br><br>\n",
        "\n",
        "## Train on Custom Data with Roboflow 🌟 NEW\n",
        "\n",
        "[Roboflow](https://roboflow.com/?ref=ultralytics) enables you to easily **organize, label, and prepare** a high quality dataset with your own custom data. Roboflow also makes it easy to establish an active learning pipeline, collaborate with your team on dataset improvement, and integrate directly into your model building workflow with the `roboflow` pip package.\n",
        "\n",
        "- Custom Training Example: [https://blog.roboflow.com/how-to-train-yolov5-on-a-custom-dataset/](https://blog.roboflow.com/how-to-train-yolov5-on-a-custom-dataset/?ref=ultralytics)\n",
        "- Custom Training Notebook: [![Open In Colab](https://colab.research.google.com/assets/colab-badge.svg)](https://colab.research.google.com/github/roboflow-ai/yolov5-custom-training-tutorial/blob/main/yolov5-custom-training.ipynb)\n",
        "<br>\n",
        "\n",
        "<p align=\"\"><a href=\"https://roboflow.com/?ref=ultralytics\"><img width=\"480\" src=\"https://uploads-ssl.webflow.com/5f6bc60e665f54545a1e52a5/6152a275ad4b4ac20cd2e21a_roboflow-annotate.gif\"/></a></p>Label images lightning fast (including with model-assisted labeling)"
      ]
    },
    {
      "cell_type": "code",
      "metadata": {
        "id": "bOy5KI2ncnWd"
      },
      "source": [
        "# Tensorboard  (optional)\n",
        "%load_ext tensorboard\n",
        "%tensorboard --logdir runs/train"
      ],
      "execution_count": null,
      "outputs": []
    },
    {
      "cell_type": "code",
      "metadata": {
        "id": "2fLAV42oNb7M"
      },
      "source": [
        "# Weights & Biases  (optional)\n",
        "%pip install -q wandb\n",
        "import wandb\n",
        "wandb.login()"
      ],
      "execution_count": null,
      "outputs": []
    },
    {
      "cell_type": "code",
      "metadata": {
        "id": "1NcFxRcFdJ_O",
        "colab": {
          "base_uri": "https://localhost:8080/"
        },
        "outputId": "8724d13d-6711-4a12-d96a-1c655e5c3549"
      },
      "source": [
        "# Train YOLOv5s on COCO128 for 3 epochs\n",
        "!python train.py --img 640 --batch 16 --epochs 3 --data coco128.yaml --weights yolov5s.pt --cache"
      ],
      "execution_count": null,
      "outputs": [
        {
          "output_type": "stream",
          "name": "stdout",
          "text": [
            "\u001b[34m\u001b[1mtrain: \u001b[0mweights=yolov5s.pt, cfg=, data=coco128.yaml, hyp=data/hyps/hyp.scratch.yaml, epochs=3, batch_size=16, imgsz=640, rect=False, resume=False, nosave=False, noval=False, noautoanchor=False, evolve=None, bucket=, cache=ram, image_weights=False, device=, multi_scale=False, single_cls=False, adam=False, sync_bn=False, workers=8, project=runs/train, name=exp, exist_ok=False, quad=False, linear_lr=False, label_smoothing=0.0, patience=100, freeze=0, save_period=-1, local_rank=-1, entity=None, upload_dataset=False, bbox_interval=-1, artifact_alias=latest\n",
            "\u001b[34m\u001b[1mgithub: \u001b[0mup to date with https://github.com/ultralytics/yolov5 ✅\n",
            "YOLOv5 🚀 v6.0-48-g84a8099 torch 1.10.0+cu102 CUDA:0 (Tesla V100-SXM2-16GB, 16160MiB)\n",
            "\n",
            "\u001b[34m\u001b[1mhyperparameters: \u001b[0mlr0=0.01, lrf=0.1, momentum=0.937, weight_decay=0.0005, warmup_epochs=3.0, warmup_momentum=0.8, warmup_bias_lr=0.1, box=0.05, cls=0.5, cls_pw=1.0, obj=1.0, obj_pw=1.0, iou_t=0.2, anchor_t=4.0, fl_gamma=0.0, hsv_h=0.015, hsv_s=0.7, hsv_v=0.4, degrees=0.0, translate=0.1, scale=0.5, shear=0.0, perspective=0.0, flipud=0.0, fliplr=0.5, mosaic=1.0, mixup=0.0, copy_paste=0.0\n",
            "\u001b[34m\u001b[1mWeights & Biases: \u001b[0mrun 'pip install wandb' to automatically track and visualize YOLOv5 🚀 runs (RECOMMENDED)\n",
            "\u001b[34m\u001b[1mTensorBoard: \u001b[0mStart with 'tensorboard --logdir runs/train', view at http://localhost:6006/\n",
            "\n",
            "                 from  n    params  module                                  arguments                     \n",
            "  0                -1  1      3520  models.common.Conv                      [3, 32, 6, 2, 2]              \n",
            "  1                -1  1     18560  models.common.Conv                      [32, 64, 3, 2]                \n",
            "  2                -1  1     18816  models.common.C3                        [64, 64, 1]                   \n",
            "  3                -1  1     73984  models.common.Conv                      [64, 128, 3, 2]               \n",
            "  4                -1  2    115712  models.common.C3                        [128, 128, 2]                 \n",
            "  5                -1  1    295424  models.common.Conv                      [128, 256, 3, 2]              \n",
            "  6                -1  3    625152  models.common.C3                        [256, 256, 3]                 \n",
            "  7                -1  1   1180672  models.common.Conv                      [256, 512, 3, 2]              \n",
            "  8                -1  1   1182720  models.common.C3                        [512, 512, 1]                 \n",
            "  9                -1  1    656896  models.common.SPPF                      [512, 512, 5]                 \n",
            " 10                -1  1    131584  models.common.Conv                      [512, 256, 1, 1]              \n",
            " 11                -1  1         0  torch.nn.modules.upsampling.Upsample    [None, 2, 'nearest']          \n",
            " 12           [-1, 6]  1         0  models.common.Concat                    [1]                           \n",
            " 13                -1  1    361984  models.common.C3                        [512, 256, 1, False]          \n",
            " 14                -1  1     33024  models.common.Conv                      [256, 128, 1, 1]              \n",
            " 15                -1  1         0  torch.nn.modules.upsampling.Upsample    [None, 2, 'nearest']          \n",
            " 16           [-1, 4]  1         0  models.common.Concat                    [1]                           \n",
            " 17                -1  1     90880  models.common.C3                        [256, 128, 1, False]          \n",
            " 18                -1  1    147712  models.common.Conv                      [128, 128, 3, 2]              \n",
            " 19          [-1, 14]  1         0  models.common.Concat                    [1]                           \n",
            " 20                -1  1    296448  models.common.C3                        [256, 256, 1, False]          \n",
            " 21                -1  1    590336  models.common.Conv                      [256, 256, 3, 2]              \n",
            " 22          [-1, 10]  1         0  models.common.Concat                    [1]                           \n",
            " 23                -1  1   1182720  models.common.C3                        [512, 512, 1, False]          \n",
            " 24      [17, 20, 23]  1    229245  models.yolo.Detect                      [80, [[10, 13, 16, 30, 33, 23], [30, 61, 62, 45, 59, 119], [116, 90, 156, 198, 373, 326]], [128, 256, 512]]\n",
            "Model Summary: 270 layers, 7235389 parameters, 7235389 gradients, 16.5 GFLOPs\n",
            "\n",
            "Transferred 349/349 items from yolov5s.pt\n",
            "Scaled weight_decay = 0.0005\n",
            "\u001b[34m\u001b[1moptimizer:\u001b[0m SGD with parameter groups 57 weight, 60 weight (no decay), 60 bias\n",
            "\u001b[34m\u001b[1malbumentations: \u001b[0mversion 1.0.3 required by YOLOv5, but version 0.1.12 is currently installed\n",
            "\u001b[34m\u001b[1mtrain: \u001b[0mScanning '../datasets/coco128/labels/train2017.cache' images and labels... 128 found, 0 missing, 2 empty, 0 corrupted: 100% 128/128 [00:00<?, ?it/s]\n",
            "\u001b[34m\u001b[1mtrain: \u001b[0mCaching images (0.1GB ram): 100% 128/128 [00:00<00:00, 296.04it/s]\n",
            "\u001b[34m\u001b[1mval: \u001b[0mScanning '../datasets/coco128/labels/train2017.cache' images and labels... 128 found, 0 missing, 2 empty, 0 corrupted: 100% 128/128 [00:00<?, ?it/s]\n",
            "\u001b[34m\u001b[1mval: \u001b[0mCaching images (0.1GB ram): 100% 128/128 [00:01<00:00, 121.58it/s]\n",
            "Plotting labels... \n",
            "\n",
            "\u001b[34m\u001b[1mautoanchor: \u001b[0mAnalyzing anchors... anchors/target = 4.27, Best Possible Recall (BPR) = 0.9935\n",
            "Image sizes 640 train, 640 val\n",
            "Using 2 dataloader workers\n",
            "Logging results to \u001b[1mruns/train/exp\u001b[0m\n",
            "Starting training for 3 epochs...\n",
            "\n",
            "     Epoch   gpu_mem       box       obj       cls    labels  img_size\n",
            "       0/2     3.62G   0.04621    0.0711   0.02112       203       640: 100% 8/8 [00:04<00:00,  1.99it/s]\n",
            "               Class     Images     Labels          P          R     [email protected] [email protected]:.95: 100% 4/4 [00:00<00:00,  4.37it/s]\n",
            "                 all        128        929      0.655      0.547      0.622       0.41\n",
            "\n",
            "     Epoch   gpu_mem       box       obj       cls    labels  img_size\n",
            "       1/2     5.31G   0.04564   0.06898   0.02116       143       640: 100% 8/8 [00:01<00:00,  4.77it/s]\n",
            "               Class     Images     Labels          P          R     [email protected] [email protected]:.95: 100% 4/4 [00:00<00:00,  4.27it/s]\n",
            "                 all        128        929       0.68      0.554      0.632      0.419\n",
            "\n",
            "     Epoch   gpu_mem       box       obj       cls    labels  img_size\n",
            "       2/2     5.31G   0.04487   0.06883   0.01998       253       640: 100% 8/8 [00:01<00:00,  4.91it/s]\n",
            "               Class     Images     Labels          P          R     [email protected] [email protected]:.95: 100% 4/4 [00:00<00:00,  4.30it/s]\n",
            "                 all        128        929       0.71      0.544      0.629      0.423\n",
            "\n",
            "3 epochs completed in 0.003 hours.\n",
            "Optimizer stripped from runs/train/exp/weights/last.pt, 14.9MB\n",
            "Optimizer stripped from runs/train/exp/weights/best.pt, 14.9MB\n",
            "\n",
            "Validating runs/train/exp/weights/best.pt...\n",
            "Fusing layers... \n",
            "Model Summary: 213 layers, 7225885 parameters, 0 gradients, 16.5 GFLOPs\n",
            "               Class     Images     Labels          P          R     [email protected] [email protected]:.95: 100% 4/4 [00:03<00:00,  1.04it/s]\n",
            "                 all        128        929       0.71      0.544       0.63      0.423\n",
            "              person        128        254      0.816      0.669      0.774      0.507\n",
            "             bicycle        128          6      0.799      0.667      0.614      0.371\n",
            "                 car        128         46      0.803      0.355      0.486      0.209\n",
            "          motorcycle        128          5      0.704        0.6      0.791      0.583\n",
            "            airplane        128          6          1      0.795      0.995      0.717\n",
            "                 bus        128          7      0.656      0.714       0.72      0.606\n",
            "               train        128          3      0.852          1      0.995      0.682\n",
            "               truck        128         12      0.521       0.25      0.395      0.215\n",
            "                boat        128          6      0.795      0.333      0.445      0.137\n",
            "       traffic light        128         14      0.576      0.143       0.24      0.161\n",
            "           stop sign        128          2      0.636        0.5      0.828      0.713\n",
            "               bench        128          9      0.972      0.444      0.575       0.25\n",
            "                bird        128         16      0.939      0.968      0.988      0.645\n",
            "                 cat        128          4      0.984       0.75      0.822      0.694\n",
            "                 dog        128          9      0.888      0.667      0.903       0.54\n",
            "               horse        128          2      0.689          1      0.995      0.697\n",
            "            elephant        128         17       0.96      0.882      0.943      0.681\n",
            "                bear        128          1      0.549          1      0.995      0.995\n",
            "               zebra        128          4       0.86          1      0.995      0.952\n",
            "             giraffe        128          9      0.822      0.778      0.905       0.57\n",
            "            backpack        128          6          1      0.309      0.457      0.195\n",
            "            umbrella        128         18      0.775      0.576       0.74      0.418\n",
            "             handbag        128         19      0.628      0.105      0.167      0.111\n",
            "                 tie        128          7       0.96      0.571      0.701      0.441\n",
            "            suitcase        128          4          1      0.895      0.995      0.621\n",
            "             frisbee        128          5      0.641        0.8      0.798      0.664\n",
            "                skis        128          1      0.627          1      0.995      0.497\n",
            "           snowboard        128          7      0.988      0.714      0.768      0.556\n",
            "         sports ball        128          6      0.671        0.5      0.579      0.339\n",
            "                kite        128         10      0.631      0.515      0.598      0.221\n",
            "        baseball bat        128          4       0.47      0.456      0.277      0.137\n",
            "      baseball glove        128          7      0.459      0.429      0.334      0.182\n",
            "          skateboard        128          5        0.7       0.48      0.736      0.548\n",
            "       tennis racket        128          7      0.559      0.571      0.538      0.315\n",
            "              bottle        128         18      0.607      0.389      0.484      0.282\n",
            "          wine glass        128         16      0.722      0.812       0.82      0.385\n",
            "                 cup        128         36      0.881      0.361      0.532      0.312\n",
            "                fork        128          6      0.384      0.167      0.239      0.191\n",
            "               knife        128         16      0.908      0.616      0.681      0.443\n",
            "               spoon        128         22      0.836      0.364      0.536      0.264\n",
            "                bowl        128         28      0.793      0.536      0.633      0.471\n",
            "              banana        128          1          0          0      0.142     0.0995\n",
            "            sandwich        128          2          0          0     0.0951     0.0717\n",
            "              orange        128          4          1          0       0.67      0.317\n",
            "            broccoli        128         11      0.345      0.182      0.283      0.243\n",
            "              carrot        128         24      0.688      0.459      0.612      0.402\n",
            "             hot dog        128          2      0.424      0.771      0.497      0.473\n",
            "               pizza        128          5      0.622          1      0.824      0.551\n",
            "               donut        128         14      0.703          1      0.952      0.853\n",
            "                cake        128          4      0.733          1      0.945      0.777\n",
            "               chair        128         35      0.512      0.486      0.488      0.222\n",
            "               couch        128          6       0.68       0.36      0.746      0.406\n",
            "        potted plant        128         14      0.797      0.714      0.808      0.482\n",
            "                 bed        128          3          1          0      0.474      0.318\n",
            "        dining table        128         13      0.852      0.445      0.478      0.315\n",
            "              toilet        128          2      0.512        0.5      0.554      0.487\n",
            "                  tv        128          2      0.754          1      0.995      0.895\n",
            "              laptop        128          3          1          0       0.39      0.147\n",
            "               mouse        128          2          1          0     0.0283     0.0226\n",
            "              remote        128          8      0.747      0.625      0.636      0.488\n",
            "          cell phone        128          8      0.555      0.166      0.417      0.222\n",
            "           microwave        128          3      0.417          1      0.995      0.732\n",
            "                oven        128          5       0.37        0.4      0.432      0.249\n",
            "                sink        128          6      0.356      0.167      0.269      0.149\n",
            "        refrigerator        128          5      0.705        0.8      0.814       0.45\n",
            "                book        128         29      0.628      0.138      0.298      0.136\n",
            "               clock        128          9      0.857      0.778      0.893      0.574\n",
            "                vase        128          2      0.242          1      0.663      0.622\n",
            "            scissors        128          1          1          0     0.0207    0.00207\n",
            "          teddy bear        128         21      0.847      0.381      0.622      0.345\n",
            "          toothbrush        128          5       0.99        0.6      0.662       0.45\n",
            "Results saved to \u001b[1mruns/train/exp\u001b[0m\n"
          ]
        }
      ]
    },
    {
      "cell_type": "markdown",
      "metadata": {
        "id": "15glLzbQx5u0"
      },
      "source": [
        "# 4. Visualize"
      ]
    },
    {
      "cell_type": "markdown",
      "metadata": {
        "id": "DLI1JmHU7B0l"
      },
      "source": [
        "## Weights & Biases Logging 🌟 NEW\n",
        "\n",
        "[Weights & Biases](https://wandb.ai/site?utm_campaign=repo_yolo_notebook) (W&B) is now integrated with YOLOv5 for real-time visualization and cloud logging of training runs. This allows for better run comparison and introspection, as well improved visibility and collaboration for teams. To enable W&B `pip install wandb`, and then train normally (you will be guided through setup on first use). \n",
        "\n",
        "During training you will see live updates at [https://wandb.ai/home](https://wandb.ai/home?utm_campaign=repo_yolo_notebook), and you can create and share detailed [Reports](https://wandb.ai/glenn-jocher/yolov5_tutorial/reports/YOLOv5-COCO128-Tutorial-Results--VmlldzozMDI5OTY) of your results. For more information see the [YOLOv5 Weights & Biases Tutorial](https://github.com/ultralytics/yolov5/issues/1289). \n",
        "\n",
        "<p align=\"left\"><img width=\"900\" alt=\"Weights & Biases dashboard\" src=\"https://user-images.githubusercontent.com/26833433/135390767-c28b050f-8455-4004-adb0-3b730386e2b2.png\"></p>"
      ]
    },
    {
      "cell_type": "markdown",
      "metadata": {
        "id": "-WPvRbS5Swl6"
      },
      "source": [
        "## Local Logging\n",
        "\n",
        "All results are logged by default to `runs/train`, with a new experiment directory created for each new training as `runs/train/exp2`, `runs/train/exp3`, etc. View train and val jpgs to see mosaics, labels, predictions and augmentation effects. Note an Ultralytics **Mosaic Dataloader** is used for training (shown below), which combines 4 images into 1 mosaic during training.\n",
        "\n",
        "> <img src=\"https://user-images.githubusercontent.com/26833433/131255960-b536647f-7c61-4f60-bbc5-cb2544d71b2a.jpg\" width=\"700\">  \n",
        "`train_batch0.jpg` shows train batch 0 mosaics and labels\n",
        "\n",
        "> <img src=\"https://user-images.githubusercontent.com/26833433/131256748-603cafc7-55d1-4e58-ab26-83657761aed9.jpg\" width=\"700\">  \n",
        "`test_batch0_labels.jpg` shows val batch 0 labels\n",
        "\n",
        "> <img src=\"https://user-images.githubusercontent.com/26833433/131256752-3f25d7a5-7b0f-4bb3-ab78-46343c3800fe.jpg\" width=\"700\">  \n",
        "`test_batch0_pred.jpg` shows val batch 0 _predictions_\n",
        "\n",
        "Training results are automatically logged to [Tensorboard](https://www.tensorflow.org/tensorboard) and [CSV](https://github.com/ultralytics/yolov5/pull/4148) as `results.csv`, which is plotted as `results.png` (below) after training completes. You can also plot any `results.csv` file manually:\n",
        "\n",
        "```python\n",
        "from utils.plots import plot_results \n",
        "plot_results('path/to/results.csv')  # plot 'results.csv' as 'results.png'\n",
        "```\n",
        "\n",
        "<img align=\"left\" width=\"800\" alt=\"COCO128 Training Results\" src=\"https://user-images.githubusercontent.com/26833433/126906780-8c5e2990-6116-4de6-b78a-367244a33ccf.png\">"
      ]
    },
    {
      "cell_type": "markdown",
      "metadata": {
        "id": "Zelyeqbyt3GD"
      },
      "source": [
        "# Environments\n",
        "\n",
        "YOLOv5 may be run in any of the following up-to-date verified environments (with all dependencies including [CUDA](https://developer.nvidia.com/cuda)/[CUDNN](https://developer.nvidia.com/cudnn), [Python](https://www.python.org/) and [PyTorch](https://pytorch.org/) preinstalled):\n",
        "\n",
        "- **Google Colab and Kaggle** notebooks with free GPU: <a href=\"https://colab.research.google.com/github/ultralytics/yolov5/blob/master/tutorial.ipynb\"><img src=\"https://colab.research.google.com/assets/colab-badge.svg\" alt=\"Open In Colab\"></a> <a href=\"https://www.kaggle.com/ultralytics/yolov5\"><img src=\"https://kaggle.com/static/images/open-in-kaggle.svg\" alt=\"Open In Kaggle\"></a>\n",
        "- **Google Cloud** Deep Learning VM. See [GCP Quickstart Guide](https://github.com/ultralytics/yolov5/wiki/GCP-Quickstart)\n",
        "- **Amazon** Deep Learning AMI. See [AWS Quickstart Guide](https://github.com/ultralytics/yolov5/wiki/AWS-Quickstart)\n",
        "- **Docker Image**. See [Docker Quickstart Guide](https://github.com/ultralytics/yolov5/wiki/Docker-Quickstart) <a href=\"https://hub.docker.com/r/ultralytics/yolov5\"><img src=\"https://img.shields.io/docker/pulls/ultralytics/yolov5?logo=docker\" alt=\"Docker Pulls\"></a>\n"
      ]
    },
    {
      "cell_type": "markdown",
      "metadata": {
        "id": "6Qu7Iesl0p54"
      },
      "source": [
        "# Status\n",
        "\n",
        "![CI CPU testing](https://github.com/ultralytics/yolov5/workflows/CI%20CPU%20testing/badge.svg)\n",
        "\n",
        "If this badge is green, all [YOLOv5 GitHub Actions](https://github.com/ultralytics/yolov5/actions) Continuous Integration (CI) tests are currently passing. CI tests verify correct operation of YOLOv5 training ([train.py](https://github.com/ultralytics/yolov5/blob/master/train.py)), testing ([val.py](https://github.com/ultralytics/yolov5/blob/master/val.py)), inference ([detect.py](https://github.com/ultralytics/yolov5/blob/master/detect.py)) and export ([export.py](https://github.com/ultralytics/yolov5/blob/master/export.py)) on MacOS, Windows, and Ubuntu every 24 hours and on every commit.\n"
      ]
    },
    {
      "cell_type": "markdown",
      "metadata": {
        "id": "IEijrePND_2I"
      },
      "source": [
        "# Appendix\n",
        "\n",
        "Optional extras below. Unit tests validate repo functionality and should be run on any PRs submitted.\n"
      ]
    },
    {
      "cell_type": "code",
      "metadata": {
        "id": "mcKoSIK2WSzj"
      },
      "source": [
        "# Reproduce\n",
        "for x in 'yolov5s', 'yolov5m', 'yolov5l', 'yolov5x':\n",
        "  !python val.py --weights {x}.pt --data coco.yaml --img 640 --task speed  # speed\n",
        "  !python val.py --weights {x}.pt --data coco.yaml --img 640 --conf 0.001 --iou 0.65  # mAP"
      ],
      "execution_count": null,
      "outputs": []
    },
    {
      "cell_type": "code",
      "metadata": {
        "id": "GMusP4OAxFu6"
      },
      "source": [
        "# PyTorch Hub\n",
        "import torch\n",
        "\n",
        "# Model\n",
        "model = torch.hub.load('ultralytics/yolov5', 'yolov5s')\n",
        "\n",
        "# Images\n",
        "dir = 'https://ultralytics.com/images/'\n",
        "imgs = [dir + f for f in ('zidane.jpg', 'bus.jpg')]  # batch of images\n",
        "\n",
        "# Inference\n",
        "results = model(imgs)\n",
        "results.print()  # or .show(), .save()"
      ],
      "execution_count": null,
      "outputs": []
    },
    {
      "cell_type": "code",
      "metadata": {
        "id": "FGH0ZjkGjejy"
      },
      "source": [
        "# CI Checks\n",
        "%%shell\n",
        "export PYTHONPATH=\"$PWD\"  # to run *.py. files in subdirectories\n",
        "rm -rf runs  # remove runs/\n",
        "for m in yolov5n; do  # models\n",
        "  python train.py --img 64 --batch 32 --weights $m.pt --epochs 1 --device 0  # train pretrained\n",
        "  python train.py --img 64 --batch 32 --weights '' --cfg $m.yaml --epochs 1 --device 0  # train scratch\n",
        "  for d in 0 cpu; do  # devices\n",
        "    python val.py --weights $m.pt --device $d # val official\n",
        "    python val.py --weights runs/train/exp/weights/best.pt --device $d # val custom\n",
        "    python detect.py --weights $m.pt --device $d  # detect official\n",
        "    python detect.py --weights runs/train/exp/weights/best.pt --device $d  # detect custom\n",
        "  done\n",
        "  python hubconf.py  # hub\n",
        "  python models/yolo.py --cfg $m.yaml  # build PyTorch model\n",
        "  python models/tf.py --weights $m.pt  # build TensorFlow model\n",
        "  python export.py --img 64 --batch 1 --weights $m.pt --include torchscript onnx  # export\n",
        "done"
      ],
      "execution_count": null,
      "outputs": []
    },
    {
      "cell_type": "code",
      "metadata": {
        "id": "gogI-kwi3Tye"
      },
      "source": [
        "# Profile\n",
        "from utils.torch_utils import profile\n",
        "\n",
        "m1 = lambda x: x * torch.sigmoid(x)\n",
        "m2 = torch.nn.SiLU()\n",
        "results = profile(input=torch.randn(16, 3, 640, 640), ops=[m1, m2], n=100)"
      ],
      "execution_count": null,
      "outputs": []
    },
    {
      "cell_type": "code",
      "metadata": {
        "id": "RVRSOhEvUdb5"
      },
      "source": [
        "# Evolve\n",
        "!python train.py --img 640 --batch 64 --epochs 100 --data coco128.yaml --weights yolov5s.pt --cache --noautoanchor --evolve\n",
        "!d=runs/train/evolve && cp evolve.* $d && zip -r evolve.zip $d && gsutil mv evolve.zip gs://bucket  # upload results (optional)"
      ],
      "execution_count": null,
      "outputs": []
    },
    {
      "cell_type": "code",
      "metadata": {
        "id": "BSgFCAcMbk1R"
      },
      "source": [
        "# VOC\n",
        "for b, m in zip([64, 48, 32, 16], ['yolov5s', 'yolov5m', 'yolov5l', 'yolov5x']):  # zip(batch_size, model)\n",
        "  !python train.py --batch {b} --weights {m}.pt --data VOC.yaml --epochs 50 --cache --img 512 --nosave --hyp hyp.finetune.yaml --project VOC --name {m}"
      ],
      "execution_count": null,
      "outputs": []
    },
    {
      "cell_type": "code",
      "metadata": {
        "id": "VTRwsvA9u7ln"
      },
      "source": [
        "# TensorRT \n",
        "# https://developer.nvidia.com/nvidia-tensorrt-download\n",
        "!lsb_release -a  # check system\n",
        "%ls /usr/local | grep cuda  # check CUDA\n",
        "!wget https://ultralytics.com/assets/TensorRT-8.2.0.6.Linux.x86_64-gnu.cuda-11.4.cudnn8.2.tar.gz  # download\n",
        "![ -d /content/TensorRT-8.2.0.6/ ] || tar -C /content/ -zxf ./TensorRT-8.2.0.6.Linux.x86_64-gnu.cuda-11.4.cudnn8.2.tar.gz  # unzip\n",
        "%pip list | grep tensorrt || pip install /content/TensorRT-8.2.0.6/python/tensorrt-8.2.0.6-cp37-none-linux_x86_64.whl  # install\n",
        "%env LD_LIBRARY_PATH=/usr/local/cuda-11.1/lib64:/content/cuda-11.1/lib64:/content/TensorRT-8.2.0.6/lib:/usr/local/nvidia/lib:/usr/local/nvidia/lib64  # add to path\n",
        "\n",
        "!python export.py --weights yolov5s.pt --include engine --imgsz 640 640 --device 0\n",
        "!python detect.py --weights yolov5s.engine --imgsz 640 640 --device 0"
      ],
      "execution_count": null,
      "outputs": []
    }
  ]
}