File size: 18,893 Bytes
24bea5e
 
 
1f69d12
 
ec4b6dd
 
 
 
 
 
63a4d86
5bd6a97
b5b56a3
ec4b6dd
5bd6a97
ec4b6dd
 
1f69d12
 
1e84a23
 
d5b6416
1f69d12
d5b6416
b6ed110
1e84a23
d5b6416
 
 
 
c47be26
4d1a2ac
 
 
153873e
1f69d12
3883261
0155548
d5b6416
7c6bae0
0155548
 
 
27a4736
f7d8562
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
53bfcbe
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
701e117
53bfcbe
f7d8562
1e84a23
 
61ea23c
1f69d12
 
 
 
 
 
 
 
92a7391
1f69d12
 
 
 
 
 
f7d8562
4e04cb0
1f69d12
 
 
3883261
1f69d12
 
 
 
b74929c
1f69d12
 
1e84a23
e8cf24b
 
00e308f
3883261
 
e8cf24b
a9553c0
1e84a23
4821d07
a9553c0
c4addd7
1e84a23
 
b94b59e
 
3883261
b94b59e
 
7a39803
3883261
b94b59e
c84dd27
b94b59e
 
1e84a23
f79d747
5d66e48
f79d747
1119949
 
c84dd27
fad57c2
1e84a23
701e117
1e84a23
 
 
e8cf24b
b94b59e
a45e472
 
a9553c0
a45e472
92a7391
1e84a23
 
0a3ff71
96fcde4
f7d8562
f3c3d2c
7af1b4c
1e84a23
f7d8562
7c6bae0
61c5019
7af1b4c
c84dd27
3883261
 
 
 
 
7af1b4c
 
1e84a23
3883261
 
7af1b4c
61ea23c
3883261
61ea23c
96e36a7
61ea23c
3883261
701e117
61ea23c
7af1b4c
61ea23c
7af1b4c
1e84a23
3883261
c09964c
1e84a23
 
 
f7d8562
1e84a23
 
f542926
1e84a23
 
 
 
225845e
3665c0f
 
225845e
3883261
225845e
f7d8562
1e84a23
f7d8562
3883261
f7d8562
 
0a3ff71
f7d8562
 
 
 
 
 
 
 
 
 
3883261
1e84a23
 
9c91aea
720aaa6
3883261
720aaa6
3883261
ca290dc
3883261
1e84a23
aa08b2b
36d12a5
f639e14
1e84a23
 
 
 
 
 
f3c3d2c
7b1f7ae
1e84a23
 
046c37e
1e84a23
7b1f7ae
1e84a23
 
7af1b4c
1e84a23
5948f20
7b1f7ae
1e84a23
b6ed110
 
 
2317f86
b6ed110
1e84a23
b40852d
d3dad42
03281f8
9b0f6e3
7b1f7ae
9b0f6e3
d3dad42
1e84a23
6bd9218
ef0b5c9
1e84a23
 
 
9b0f6e3
 
 
 
4728840
9b0f6e3
 
 
 
07a82f4
7b1f7ae
1e84a23
 
71dd276
19e2482
95fa653
7b1f7ae
1e84a23
 
 
 
 
 
bfb2276
3732f9a
4e04cb0
 
4695ca8
a9553c0
4695ca8
 
f419721
1e84a23
92a7391
1e84a23
 
 
b8c2da4
86f4247
19c8b2c
f7d8562
4e04cb0
c4addd7
 
c6b51f4
3883261
1e84a23
4e04cb0
1ce686e
a9553c0
3732f9a
bfb2276
 
 
 
7b1f7ae
1e84a23
f419721
0de4a9c
 
1f69d12
19c8b2c
30bc089
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
bfb2276
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
# YOLOv5 🚀 by Ultralytics, GPL-3.0 license
"""
Validate a trained YOLOv5 model accuracy on a custom dataset

Usage:
    $ python path/to/val.py --weights yolov5s.pt --data coco128.yaml --img 640

Usage - formats:
    $ python path/to/val.py --weights yolov5s.pt                 # PyTorch
                                      yolov5s.torchscript        # TorchScript
                                      yolov5s.onnx               # ONNX Runtime or OpenCV DNN with --dnn
                                      yolov5s.xml                # OpenVINO
                                      yolov5s.engine             # TensorRT
                                      yolov5s.mlmodel            # CoreML (MacOS-only)
                                      yolov5s_saved_model        # TensorFlow SavedModel
                                      yolov5s.pb                 # TensorFlow GraphDef
                                      yolov5s.tflite             # TensorFlow Lite
                                      yolov5s_edgetpu.tflite     # TensorFlow Edge TPU
"""

import argparse
import json
import os
import sys
from pathlib import Path
from threading import Thread

import numpy as np
import torch
from tqdm import tqdm

FILE = Path(__file__).resolve()
ROOT = FILE.parents[0]  # YOLOv5 root directory
if str(ROOT) not in sys.path:
    sys.path.append(str(ROOT))  # add ROOT to PATH
ROOT = Path(os.path.relpath(ROOT, Path.cwd()))  # relative

from models.common import DetectMultiBackend
from utils.callbacks import Callbacks
from utils.datasets import create_dataloader
from utils.general import (LOGGER, box_iou, check_dataset, check_img_size, check_requirements, check_yaml,
                           coco80_to_coco91_class, colorstr, increment_path, non_max_suppression, print_args,
                           scale_coords, xywh2xyxy, xyxy2xywh)
from utils.metrics import ConfusionMatrix, ap_per_class
from utils.plots import output_to_target, plot_images, plot_val_study
from utils.torch_utils import select_device, time_sync


def save_one_txt(predn, save_conf, shape, file):
    # Save one txt result
    gn = torch.tensor(shape)[[1, 0, 1, 0]]  # normalization gain whwh
    for *xyxy, conf, cls in predn.tolist():
        xywh = (xyxy2xywh(torch.tensor(xyxy).view(1, 4)) / gn).view(-1).tolist()  # normalized xywh
        line = (cls, *xywh, conf) if save_conf else (cls, *xywh)  # label format
        with open(file, 'a') as f:
            f.write(('%g ' * len(line)).rstrip() % line + '\n')


def save_one_json(predn, jdict, path, class_map):
    # Save one JSON result {"image_id": 42, "category_id": 18, "bbox": [258.15, 41.29, 348.26, 243.78], "score": 0.236}
    image_id = int(path.stem) if path.stem.isnumeric() else path.stem
    box = xyxy2xywh(predn[:, :4])  # xywh
    box[:, :2] -= box[:, 2:] / 2  # xy center to top-left corner
    for p, b in zip(predn.tolist(), box.tolist()):
        jdict.append({'image_id': image_id,
                      'category_id': class_map[int(p[5])],
                      'bbox': [round(x, 3) for x in b],
                      'score': round(p[4], 5)})


def process_batch(detections, labels, iouv):
    """
    Return correct predictions matrix. Both sets of boxes are in (x1, y1, x2, y2) format.
    Arguments:
        detections (Array[N, 6]), x1, y1, x2, y2, conf, class
        labels (Array[M, 5]), class, x1, y1, x2, y2
    Returns:
        correct (Array[N, 10]), for 10 IoU levels
    """
    correct = torch.zeros(detections.shape[0], iouv.shape[0], dtype=torch.bool, device=iouv.device)
    iou = box_iou(labels[:, 1:], detections[:, :4])
    x = torch.where((iou >= iouv[0]) & (labels[:, 0:1] == detections[:, 5]))  # IoU above threshold and classes match
    if x[0].shape[0]:
        matches = torch.cat((torch.stack(x, 1), iou[x[0], x[1]][:, None]), 1).cpu().numpy()  # [label, detection, iou]
        if x[0].shape[0] > 1:
            matches = matches[matches[:, 2].argsort()[::-1]]
            matches = matches[np.unique(matches[:, 1], return_index=True)[1]]
            # matches = matches[matches[:, 2].argsort()[::-1]]
            matches = matches[np.unique(matches[:, 0], return_index=True)[1]]
        matches = torch.from_numpy(matches).to(iouv.device)
        correct[matches[:, 1].long()] = matches[:, 2:3] >= iouv
    return correct


@torch.no_grad()
def run(data,
        weights=None,  # model.pt path(s)
        batch_size=32,  # batch size
        imgsz=640,  # inference size (pixels)
        conf_thres=0.001,  # confidence threshold
        iou_thres=0.6,  # NMS IoU threshold
        task='val',  # train, val, test, speed or study
        device='',  # cuda device, i.e. 0 or 0,1,2,3 or cpu
        workers=8,  # max dataloader workers (per RANK in DDP mode)
        single_cls=False,  # treat as single-class dataset
        augment=False,  # augmented inference
        verbose=False,  # verbose output
        save_txt=False,  # save results to *.txt
        save_hybrid=False,  # save label+prediction hybrid results to *.txt
        save_conf=False,  # save confidences in --save-txt labels
        save_json=False,  # save a COCO-JSON results file
        project=ROOT / 'runs/val',  # save to project/name
        name='exp',  # save to project/name
        exist_ok=False,  # existing project/name ok, do not increment
        half=True,  # use FP16 half-precision inference
        dnn=False,  # use OpenCV DNN for ONNX inference
        model=None,
        dataloader=None,
        save_dir=Path(''),
        plots=True,
        callbacks=Callbacks(),
        compute_loss=None,
        ):
    # Initialize/load model and set device
    training = model is not None
    if training:  # called by train.py
        device, pt, jit, engine = next(model.parameters()).device, True, False, False  # get model device, PyTorch model
        half &= device.type != 'cpu'  # half precision only supported on CUDA
        model.half() if half else model.float()
    else:  # called directly
        device = select_device(device, batch_size=batch_size)

        # Directories
        save_dir = increment_path(Path(project) / name, exist_ok=exist_ok)  # increment run
        (save_dir / 'labels' if save_txt else save_dir).mkdir(parents=True, exist_ok=True)  # make dir

        # Load model
        model = DetectMultiBackend(weights, device=device, dnn=dnn, data=data, fp16=half)
        stride, pt, jit, engine = model.stride, model.pt, model.jit, model.engine
        imgsz = check_img_size(imgsz, s=stride)  # check image size
        half = model.fp16  # FP16 supported on limited backends with CUDA
        if engine:
            batch_size = model.batch_size
        else:
            device = model.device
            if not (pt or jit):
                batch_size = 1  # export.py models default to batch-size 1
                LOGGER.info(f'Forcing --batch-size 1 square inference (1,3,{imgsz},{imgsz}) for non-PyTorch models')

        # Data
        data = check_dataset(data)  # check

    # Configure
    model.eval()
    cuda = device.type != 'cpu'
    is_coco = isinstance(data.get('val'), str) and data['val'].endswith('coco/val2017.txt')  # COCO dataset
    nc = 1 if single_cls else int(data['nc'])  # number of classes
    iouv = torch.linspace(0.5, 0.95, 10, device=device)  # iou vector for [email protected]:0.95
    niou = iouv.numel()

    # Dataloader
    if not training:
        model.warmup(imgsz=(1 if pt else batch_size, 3, imgsz, imgsz))  # warmup
        pad = 0.0 if task in ('speed', 'benchmark') else 0.5
        rect = False if task == 'benchmark' else pt  # square inference for benchmarks
        task = task if task in ('train', 'val', 'test') else 'val'  # path to train/val/test images
        dataloader = create_dataloader(data[task], imgsz, batch_size, stride, single_cls, pad=pad, rect=rect,
                                       workers=workers, prefix=colorstr(f'{task}: '))[0]

    seen = 0
    confusion_matrix = ConfusionMatrix(nc=nc)
    names = {k: v for k, v in enumerate(model.names if hasattr(model, 'names') else model.module.names)}
    class_map = coco80_to_coco91_class() if is_coco else list(range(1000))
    s = ('%20s' + '%11s' * 6) % ('Class', 'Images', 'Labels', 'P', 'R', '[email protected]', '[email protected]:.95')
    dt, p, r, f1, mp, mr, map50, map = [0.0, 0.0, 0.0], 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0
    loss = torch.zeros(3, device=device)
    jdict, stats, ap, ap_class = [], [], [], []
    pbar = tqdm(dataloader, desc=s, bar_format='{l_bar}{bar:10}{r_bar}{bar:-10b}')  # progress bar
    for batch_i, (im, targets, paths, shapes) in enumerate(pbar):
        t1 = time_sync()
        if cuda:
            im = im.to(device, non_blocking=True)
            targets = targets.to(device)
        im = im.half() if half else im.float()  # uint8 to fp16/32
        im /= 255  # 0 - 255 to 0.0 - 1.0
        nb, _, height, width = im.shape  # batch size, channels, height, width
        t2 = time_sync()
        dt[0] += t2 - t1

        # Inference
        out, train_out = model(im) if training else model(im, augment=augment, val=True)  # inference, loss outputs
        dt[1] += time_sync() - t2

        # Loss
        if compute_loss:
            loss += compute_loss([x.float() for x in train_out], targets)[1]  # box, obj, cls

        # NMS
        targets[:, 2:] *= torch.tensor((width, height, width, height), device=device)  # to pixels
        lb = [targets[targets[:, 0] == i, 1:] for i in range(nb)] if save_hybrid else []  # for autolabelling
        t3 = time_sync()
        out = non_max_suppression(out, conf_thres, iou_thres, labels=lb, multi_label=True, agnostic=single_cls)
        dt[2] += time_sync() - t3

        # Metrics
        for si, pred in enumerate(out):
            labels = targets[targets[:, 0] == si, 1:]
            nl = len(labels)
            tcls = labels[:, 0].tolist() if nl else []  # target class
            path, shape = Path(paths[si]), shapes[si][0]
            seen += 1

            if len(pred) == 0:
                if nl:
                    stats.append((torch.zeros(0, niou, dtype=torch.bool), torch.Tensor(), torch.Tensor(), tcls))
                continue

            # Predictions
            if single_cls:
                pred[:, 5] = 0
            predn = pred.clone()
            scale_coords(im[si].shape[1:], predn[:, :4], shape, shapes[si][1])  # native-space pred

            # Evaluate
            if nl:
                tbox = xywh2xyxy(labels[:, 1:5])  # target boxes
                scale_coords(im[si].shape[1:], tbox, shape, shapes[si][1])  # native-space labels
                labelsn = torch.cat((labels[:, 0:1], tbox), 1)  # native-space labels
                correct = process_batch(predn, labelsn, iouv)
                if plots:
                    confusion_matrix.process_batch(predn, labelsn)
            else:
                correct = torch.zeros(pred.shape[0], niou, dtype=torch.bool)
            stats.append((correct.cpu(), pred[:, 4].cpu(), pred[:, 5].cpu(), tcls))  # (correct, conf, pcls, tcls)

            # Save/log
            if save_txt:
                save_one_txt(predn, save_conf, shape, file=save_dir / 'labels' / (path.stem + '.txt'))
            if save_json:
                save_one_json(predn, jdict, path, class_map)  # append to COCO-JSON dictionary
            callbacks.run('on_val_image_end', pred, predn, path, names, im[si])

        # Plot images
        if plots and batch_i < 3:
            f = save_dir / f'val_batch{batch_i}_labels.jpg'  # labels
            Thread(target=plot_images, args=(im, targets, paths, f, names), daemon=True).start()
            f = save_dir / f'val_batch{batch_i}_pred.jpg'  # predictions
            Thread(target=plot_images, args=(im, output_to_target(out), paths, f, names), daemon=True).start()

    # Compute metrics
    stats = [np.concatenate(x, 0) for x in zip(*stats)]  # to numpy
    if len(stats) and stats[0].any():
        tp, fp, p, r, f1, ap, ap_class = ap_per_class(*stats, plot=plots, save_dir=save_dir, names=names)
        ap50, ap = ap[:, 0], ap.mean(1)  # [email protected], [email protected]:0.95
        mp, mr, map50, map = p.mean(), r.mean(), ap50.mean(), ap.mean()
        nt = np.bincount(stats[3].astype(np.int64), minlength=nc)  # number of targets per class
    else:
        nt = torch.zeros(1)

    # Print results
    pf = '%20s' + '%11i' * 2 + '%11.3g' * 4  # print format
    LOGGER.info(pf % ('all', seen, nt.sum(), mp, mr, map50, map))

    # Print results per class
    if (verbose or (nc < 50 and not training)) and nc > 1 and len(stats):
        for i, c in enumerate(ap_class):
            LOGGER.info(pf % (names[c], seen, nt[c], p[i], r[i], ap50[i], ap[i]))

    # Print speeds
    t = tuple(x / seen * 1E3 for x in dt)  # speeds per image
    if not training:
        shape = (batch_size, 3, imgsz, imgsz)
        LOGGER.info(f'Speed: %.1fms pre-process, %.1fms inference, %.1fms NMS per image at shape {shape}' % t)

    # Plots
    if plots:
        confusion_matrix.plot(save_dir=save_dir, names=list(names.values()))
        callbacks.run('on_val_end')

    # Save JSON
    if save_json and len(jdict):
        w = Path(weights[0] if isinstance(weights, list) else weights).stem if weights is not None else ''  # weights
        anno_json = str(Path(data.get('path', '../coco')) / 'annotations/instances_val2017.json')  # annotations json
        pred_json = str(save_dir / f"{w}_predictions.json")  # predictions json
        LOGGER.info(f'\nEvaluating pycocotools mAP... saving {pred_json}...')
        with open(pred_json, 'w') as f:
            json.dump(jdict, f)

        try:  # https://github.com/cocodataset/cocoapi/blob/master/PythonAPI/pycocoEvalDemo.ipynb
            check_requirements(['pycocotools'])
            from pycocotools.coco import COCO
            from pycocotools.cocoeval import COCOeval

            anno = COCO(anno_json)  # init annotations api
            pred = anno.loadRes(pred_json)  # init predictions api
            eval = COCOeval(anno, pred, 'bbox')
            if is_coco:
                eval.params.imgIds = [int(Path(x).stem) for x in dataloader.dataset.im_files]  # image IDs to evaluate
            eval.evaluate()
            eval.accumulate()
            eval.summarize()
            map, map50 = eval.stats[:2]  # update results ([email protected]:0.95, [email protected])
        except Exception as e:
            LOGGER.info(f'pycocotools unable to run: {e}')

    # Return results
    model.float()  # for training
    if not training:
        s = f"\n{len(list(save_dir.glob('labels/*.txt')))} labels saved to {save_dir / 'labels'}" if save_txt else ''
        LOGGER.info(f"Results saved to {colorstr('bold', save_dir)}{s}")
    maps = np.zeros(nc) + map
    for i, c in enumerate(ap_class):
        maps[c] = ap[i]
    return (mp, mr, map50, map, *(loss.cpu() / len(dataloader)).tolist()), maps, t


def parse_opt():
    parser = argparse.ArgumentParser()
    parser.add_argument('--data', type=str, default=ROOT / 'data/coco128.yaml', help='dataset.yaml path')
    parser.add_argument('--weights', nargs='+', type=str, default=ROOT / 'yolov5s.pt', help='model.pt path(s)')
    parser.add_argument('--batch-size', type=int, default=32, help='batch size')
    parser.add_argument('--imgsz', '--img', '--img-size', type=int, default=640, help='inference size (pixels)')
    parser.add_argument('--conf-thres', type=float, default=0.001, help='confidence threshold')
    parser.add_argument('--iou-thres', type=float, default=0.6, help='NMS IoU threshold')
    parser.add_argument('--task', default='val', help='train, val, test, speed or study')
    parser.add_argument('--device', default='', help='cuda device, i.e. 0 or 0,1,2,3 or cpu')
    parser.add_argument('--workers', type=int, default=8, help='max dataloader workers (per RANK in DDP mode)')
    parser.add_argument('--single-cls', action='store_true', help='treat as single-class dataset')
    parser.add_argument('--augment', action='store_true', help='augmented inference')
    parser.add_argument('--verbose', action='store_true', help='report mAP by class')
    parser.add_argument('--save-txt', action='store_true', help='save results to *.txt')
    parser.add_argument('--save-hybrid', action='store_true', help='save label+prediction hybrid results to *.txt')
    parser.add_argument('--save-conf', action='store_true', help='save confidences in --save-txt labels')
    parser.add_argument('--save-json', action='store_true', help='save a COCO-JSON results file')
    parser.add_argument('--project', default=ROOT / 'runs/val', help='save to project/name')
    parser.add_argument('--name', default='exp', help='save to project/name')
    parser.add_argument('--exist-ok', action='store_true', help='existing project/name ok, do not increment')
    parser.add_argument('--half', action='store_true', help='use FP16 half-precision inference')
    parser.add_argument('--dnn', action='store_true', help='use OpenCV DNN for ONNX inference')
    opt = parser.parse_args()
    opt.data = check_yaml(opt.data)  # check YAML
    opt.save_json |= opt.data.endswith('coco.yaml')
    opt.save_txt |= opt.save_hybrid
    print_args(FILE.stem, opt)
    return opt


def main(opt):
    check_requirements(requirements=ROOT / 'requirements.txt', exclude=('tensorboard', 'thop'))

    if opt.task in ('train', 'val', 'test'):  # run normally
        if opt.conf_thres > 0.001:  # https://github.com/ultralytics/yolov5/issues/1466
            LOGGER.info(f'WARNING: confidence threshold {opt.conf_thres} >> 0.001 will produce invalid mAP values.')
        run(**vars(opt))

    else:
        weights = opt.weights if isinstance(opt.weights, list) else [opt.weights]
        opt.half = True  # FP16 for fastest results
        if opt.task == 'speed':  # speed benchmarks
            # python val.py --task speed --data coco.yaml --batch 1 --weights yolov5n.pt yolov5s.pt...
            opt.conf_thres, opt.iou_thres, opt.save_json = 0.25, 0.45, False
            for opt.weights in weights:
                run(**vars(opt), plots=False)

        elif opt.task == 'study':  # speed vs mAP benchmarks
            # python val.py --task study --data coco.yaml --iou 0.7 --weights yolov5n.pt yolov5s.pt...
            for opt.weights in weights:
                f = f'study_{Path(opt.data).stem}_{Path(opt.weights).stem}.txt'  # filename to save to
                x, y = list(range(256, 1536 + 128, 128)), []  # x axis (image sizes), y axis
                for opt.imgsz in x:  # img-size
                    LOGGER.info(f'\nRunning {f} --imgsz {opt.imgsz}...')
                    r, _, t = run(**vars(opt), plots=False)
                    y.append(r + t)  # results and times
                np.savetxt(f, y, fmt='%10.4g')  # save
            os.system('zip -r study.zip study_*.txt')
            plot_val_study(x=x)  # plot


if __name__ == "__main__":
    opt = parse_opt()
    main(opt)