File size: 11,117 Bytes
1487bc8
 
1e84a23
 
5a40ce6
613b9d6
69be8e7
b10609f
1487bc8
f5b8f7d
 
 
1487bc8
f5b8f7d
c8c8da6
 
 
 
 
f5b8f7d
c8c8da6
1e84a23
f5b8f7d
51cc096
916d4aa
54e1762
1e84a23
 
 
 
f5b8f7d
 
 
 
 
0f395b3
f5b8f7d
 
 
 
 
 
 
 
 
1e84a23
c8c8da6
 
 
 
 
 
 
f5b8f7d
c8c8da6
1e84a23
69be8e7
1e84a23
 
201bafc
1e84a23
52b6263
1e84a23
 
 
 
 
7841d7b
b8b8629
7841d7b
1620669
999804f
7841d7b
8c43a69
 
a040500
 
fdbcc8f
7841d7b
7ecf09d
a040500
 
 
 
 
 
eeb2bbf
170d12e
 
eeb2bbf
1e84a23
 
 
 
f5b8f7d
1e84a23
e169edf
 
1e84a23
e169edf
 
e2b7bc0
 
1e84a23
 
4821d07
1e84a23
4821d07
1e84a23
7a6870b
 
1e84a23
0a52ae1
7a6870b
 
 
 
 
1e84a23
1487bc8
0a52ae1
 
 
e5d7122
0a52ae1
 
1e84a23
0a52ae1
569757e
0a52ae1
e5d7122
 
0a52ae1
 
e5d7122
7a6870b
0a52ae1
1e84a23
a040500
 
1e84a23
69be8e7
1e84a23
b7ac446
916d4aa
 
b7ac446
1e84a23
1487bc8
1e84a23
 
 
 
8669f45
1e84a23
 
46e3cad
 
 
b2d4307
46e3cad
 
 
 
 
 
1e84a23
 
df7988d
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
<a align="left" href="https://apps.apple.com/app/id1452689527" target="_blank">
<img width="800" src="https://user-images.githubusercontent.com/26833433/98699617-a1595a00-2377-11eb-8145-fc674eb9b1a7.jpg"></a>
&nbsp

<a href="https://github.com/ultralytics/yolov5/actions"><img src="https://github.com/ultralytics/yolov5/workflows/CI%20CPU%20testing/badge.svg" alt="CI CPU testing"></a>

This repository represents Ultralytics open-source research into future object detection methods, and incorporates lessons learned and best practices evolved over thousands of hours of training and evolution on anonymized client datasets. **All code and models are under active development, and are subject to modification or deletion without notice.** Use at your own risk.

<p align="left"><img width="800" src="https://user-images.githubusercontent.com/26833433/114313216-f0a5e100-9af5-11eb-8445-c682b60da2e3.png"></p>
<details>
  <summary>YOLOv5-P5 640 Figure (click to expand)</summary>
  
<p align="left"><img width="800" src="https://user-images.githubusercontent.com/26833433/114313219-f1d70e00-9af5-11eb-9973-52b1f98d321a.png"></p>
</details>
<details>
  <summary>Figure Notes (click to expand)</summary>
  
  * GPU Speed measures end-to-end time per image averaged over 5000 COCO val2017 images using a V100 GPU with batch size 32, and includes image preprocessing, PyTorch FP16 inference, postprocessing and NMS. 
  * EfficientDet data from [google/automl](https://github.com/google/automl) at batch size 8.
  * **Reproduce** by `python test.py --task study --data coco.yaml --iou 0.7 --weights yolov5s6.pt yolov5m6.pt yolov5l6.pt yolov5x6.pt`
</details>

- **April 11, 2021**: [v5.0 release](https://github.com/ultralytics/yolov5/releases/tag/v5.0): YOLOv5-P6 1280 models, [AWS](https://github.com/ultralytics/yolov5/wiki/AWS-Quickstart), [Supervise.ly](https://github.com/ultralytics/yolov5/issues/2518) and [YouTube](https://github.com/ultralytics/yolov5/pull/2752) integrations.
- **January 5, 2021**: [v4.0 release](https://github.com/ultralytics/yolov5/releases/tag/v4.0): nn.SiLU() activations, [Weights & Biases](https://wandb.ai/site?utm_campaign=repo_yolo_readme) logging, [PyTorch Hub](https://pytorch.org/hub/ultralytics_yolov5/) integration.
- **August 13, 2020**: [v3.0 release](https://github.com/ultralytics/yolov5/releases/tag/v3.0): nn.Hardswish() activations, data autodownload, native AMP.
- **July 23, 2020**: [v2.0 release](https://github.com/ultralytics/yolov5/releases/tag/v2.0): improved model definition, training and mAP.


## Pretrained Checkpoints

[assets]: https://github.com/ultralytics/yolov5/releases

Model |size<br><sup>(pixels) |mAP<sup>val<br>0.5:0.95 |mAP<sup>test<br>0.5:0.95 |mAP<sup>val<br>0.5 |Speed<br><sup>V100 (ms) | |params<br><sup>(M) |FLOPS<br><sup>640 (B)
---   |---  |---        |---         |---             |---                |---|---              |---
[YOLOv5s][assets]    |640  |36.7     |36.7     |55.4     |**2.0** | |7.3   |17.0
[YOLOv5m][assets]    |640  |44.5     |44.5     |63.1     |2.7     | |21.4  |51.3
[YOLOv5l][assets]    |640  |48.2     |48.2     |66.9     |3.8     | |47.0  |115.4
[YOLOv5x][assets]    |640  |**50.4** |**50.4** |**68.8** |6.1     | |87.7  |218.8
| | | | | | || |
[YOLOv5s6][assets]   |1280 |43.3     |43.3     |61.9     |**4.3** | |12.7  |17.4
[YOLOv5m6][assets]   |1280 |50.5     |50.5     |68.7     |8.4     | |35.9  |52.4
[YOLOv5l6][assets]   |1280 |53.4     |53.4     |71.1     |12.3    | |77.2  |117.7
[YOLOv5x6][assets]   |1280 |**54.4** |**54.4** |**72.0** |22.4    | |141.8 |222.9
| | | | | | || |
[YOLOv5x6][assets] TTA |1280 |**55.0** |**55.0** |**72.0** |70.8 | |-  |-

<details>
  <summary>Table Notes (click to expand)</summary>
  
  * AP<sup>test</sup> denotes COCO [test-dev2017](http://cocodataset.org/#upload) server results, all other AP results denote val2017 accuracy.  
  * AP values are for single-model single-scale unless otherwise noted. **Reproduce mAP** by `python test.py --data coco.yaml --img 640 --conf 0.001 --iou 0.65`  
  * Speed<sub>GPU</sub> averaged over 5000 COCO val2017 images using a GCP [n1-standard-16](https://cloud.google.com/compute/docs/machine-types#n1_standard_machine_types) V100 instance, and includes FP16 inference, postprocessing and NMS. **Reproduce speed** by `python test.py --data coco.yaml --img 640 --conf 0.25 --iou 0.45`  
  * All checkpoints are trained to 300 epochs with default settings and hyperparameters (no autoaugmentation). 
  * Test Time Augmentation ([TTA](https://github.com/ultralytics/yolov5/issues/303)) includes reflection and scale augmentation. **Reproduce TTA** by `python test.py --data coco.yaml --img 1536 --iou 0.7 --augment`
</details>


## Requirements

Python 3.8 or later with all [requirements.txt](https://github.com/ultralytics/yolov5/blob/master/requirements.txt) dependencies installed, including `torch>=1.7`. To install run:
```bash
$ pip install -r requirements.txt
```


## Tutorials

* [Train Custom Data](https://github.com/ultralytics/yolov5/wiki/Train-Custom-Data)&nbsp; πŸš€ RECOMMENDED
* [Tips for Best Training Results](https://github.com/ultralytics/yolov5/wiki/Tips-for-Best-Training-Results)&nbsp; ☘️ RECOMMENDED
* [Weights & Biases Logging](https://github.com/ultralytics/yolov5/issues/1289)&nbsp; 🌟 NEW
* [Supervisely Ecosystem](https://github.com/ultralytics/yolov5/issues/2518)&nbsp; 🌟 NEW
* [Multi-GPU Training](https://github.com/ultralytics/yolov5/issues/475)
* [PyTorch Hub](https://github.com/ultralytics/yolov5/issues/36)&nbsp; ⭐ NEW
* [ONNX and TorchScript Export](https://github.com/ultralytics/yolov5/issues/251)
* [Test-Time Augmentation (TTA)](https://github.com/ultralytics/yolov5/issues/303)
* [Model Ensembling](https://github.com/ultralytics/yolov5/issues/318)
* [Model Pruning/Sparsity](https://github.com/ultralytics/yolov5/issues/304)
* [Hyperparameter Evolution](https://github.com/ultralytics/yolov5/issues/607)
* [Transfer Learning with Frozen Layers](https://github.com/ultralytics/yolov5/issues/1314)&nbsp; ⭐ NEW
* [TensorRT Deployment](https://github.com/wang-xinyu/tensorrtx)


## Environments

YOLOv5 may be run in any of the following up-to-date verified environments (with all dependencies including [CUDA](https://developer.nvidia.com/cuda)/[CUDNN](https://developer.nvidia.com/cudnn), [Python](https://www.python.org/) and [PyTorch](https://pytorch.org/) preinstalled):

- **Google Colab and Kaggle** notebooks with free GPU: <a href="https://colab.research.google.com/github/ultralytics/yolov5/blob/master/tutorial.ipynb"><img src="https://colab.research.google.com/assets/colab-badge.svg" alt="Open In Colab"></a> <a href="https://www.kaggle.com/ultralytics/yolov5"><img src="https://kaggle.com/static/images/open-in-kaggle.svg" alt="Open In Kaggle"></a>
- **Google Cloud** Deep Learning VM. See [GCP Quickstart Guide](https://github.com/ultralytics/yolov5/wiki/GCP-Quickstart)
- **Amazon** Deep Learning AMI. See [AWS Quickstart Guide](https://github.com/ultralytics/yolov5/wiki/AWS-Quickstart)
- **Docker Image**. See [Docker Quickstart Guide](https://github.com/ultralytics/yolov5/wiki/Docker-Quickstart) <a href="https://hub.docker.com/r/ultralytics/yolov5"><img src="https://img.shields.io/docker/pulls/ultralytics/yolov5?logo=docker" alt="Docker Pulls"></a>


## Inference

`detect.py` runs inference on a variety of sources, downloading models automatically from the [latest YOLOv5 release](https://github.com/ultralytics/yolov5/releases) and saving results to `runs/detect`.
```bash
$ python detect.py --source 0  # webcam
                            file.jpg  # image 
                            file.mp4  # video
                            path/  # directory
                            path/*.jpg  # glob
                            'https://youtu.be/NUsoVlDFqZg'  # YouTube video
                            'rtsp://example.com/media.mp4'  # RTSP, RTMP, HTTP stream
```

To run inference on example images in `data/images`:
```bash
$ python detect.py --source data/images --weights yolov5s.pt --conf 0.25

Namespace(agnostic_nms=False, augment=False, classes=None, conf_thres=0.25, device='', exist_ok=False, img_size=640, iou_thres=0.45, name='exp', project='runs/detect', save_conf=False, save_txt=False, source='data/images/', update=False, view_img=False, weights=['yolov5s.pt'])
YOLOv5 v4.0-96-g83dc1b4 torch 1.7.0+cu101 CUDA:0 (Tesla V100-SXM2-16GB, 16160.5MB)

Fusing layers... 
Model Summary: 224 layers, 7266973 parameters, 0 gradients, 17.0 GFLOPS
image 1/2 /content/yolov5/data/images/bus.jpg: 640x480 4 persons, 1 bus, Done. (0.010s)
image 2/2 /content/yolov5/data/images/zidane.jpg: 384x640 2 persons, 1 tie, Done. (0.011s)
Results saved to runs/detect/exp2
Done. (0.103s)
```
<img width="500" src="https://user-images.githubusercontent.com/26833433/97107365-685a8d80-16c7-11eb-8c2e-83aac701d8b9.jpeg">  

### PyTorch Hub

Inference with YOLOv5 and [PyTorch Hub](https://github.com/ultralytics/yolov5/issues/36):
```python
import torch

# Model
model = torch.hub.load('ultralytics/yolov5', 'yolov5s')

# Image
img = 'https://github.com/ultralytics/yolov5/raw/master/data/images/zidane.jpg'

# Inference
results = model(img)
results.print()  # or .show(), .save()
```


## Training

Run commands below to reproduce results on [COCO](https://github.com/ultralytics/yolov5/blob/master/data/scripts/get_coco.sh) dataset (dataset auto-downloads on first use). Training times for YOLOv5s/m/l/x are 2/4/6/8 days on a single V100 (multi-GPU times faster). Use the largest `--batch-size` your GPU allows (batch sizes shown for 16 GB devices).
```bash
$ python train.py --data coco.yaml --cfg yolov5s.yaml --weights '' --batch-size 64
                                         yolov5m                                40
                                         yolov5l                                24
                                         yolov5x                                16
```
<img width="800" src="https://user-images.githubusercontent.com/26833433/90222759-949d8800-ddc1-11ea-9fa1-1c97eed2b963.png">


## Citation

[![DOI](https://zenodo.org/badge/264818686.svg)](https://zenodo.org/badge/latestdoi/264818686)


## About Us

Ultralytics is a U.S.-based particle physics and AI startup with over 6 years of expertise supporting government, academic and business clients. We offer a wide range of vision AI services, spanning from simple expert advice up to delivery of fully customized, end-to-end production solutions, including:
- **Cloud-based AI** systems operating on **hundreds of HD video streams in realtime.**
- **Edge AI** integrated into custom iOS and Android apps for realtime **30 FPS video inference.**
- **Custom data training**, hyperparameter evolution, and model exportation to any destination.

For business inquiries and professional support requests please visit us at https://www.ultralytics.com. 


## Contact

**Issues should be raised directly in the repository.** For business inquiries or professional support requests please visit https://www.ultralytics.com or email Glenn Jocher at [email protected].