File size: 56,507 Bytes
1e84a23 9ac9ec3 62d77a1 9ac9ec3 b27f69f 9ac9ec3 62d77a1 9ac9ec3 62d77a1 9ac9ec3 62d77a1 9ac9ec3 b27f69f 9ac9ec3 62d77a1 4e65052 62d77a1 4e65052 62d77a1 4e65052 62d77a1 9ac9ec3 b27f69f 9ac9ec3 62d77a1 9ac9ec3 4e65052 9ac9ec3 083c13d 9ac9ec3 083c13d 9ac9ec3 62d77a1 9ac9ec3 62d77a1 9ac9ec3 b27f69f 9ac9ec3 62d77a1 9ac9ec3 62d77a1 9ac9ec3 62d77a1 9ac9ec3 62d77a1 9ac9ec3 b27f69f 9ac9ec3 62d77a1 9ac9ec3 b27f69f 9ac9ec3 62d77a1 9ac9ec3 b27f69f 9ac9ec3 4e65052 9ac9ec3 62d77a1 9ac9ec3 b27f69f 9ac9ec3 62d77a1 9ac9ec3 b27f69f 9ac9ec3 62d77a1 9ac9ec3 b27f69f 9ac9ec3 1e84a23 d6ae1c8 1e84a23 5c32bd3 1e84a23 5c32bd3 6b19f72 1e84a23 bb0aed1 f3c3d2c 1e84a23 9ac9ec3 1e84a23 9d7c778 1e84a23 9ac9ec3 1e84a23 9d7c778 9ac9ec3 46c43b7 7ebb5e5 1e84a23 7ebb5e5 b545ee3 7ebb5e5 b545ee3 7d56d45 7ebb5e5 1e84a23 d6ae1c8 9d7c778 62d77a1 9d7c778 7ebb5e5 4bab565 62d77a1 9d7c778 1e84a23 9ac9ec3 1e84a23 9d7c778 1e84a23 9029759 b27f69f b8f979b b27f69f b8f979b b27f69f 1e84a23 083c13d 46c43b7 62d77a1 1e84a23 62d77a1 7ebb5e5 1e84a23 7ebb5e5 1e84a23 62d77a1 1e84a23 62d77a1 1e84a23 9ac9ec3 62d77a1 1e84a23 083c13d 1a10b0e 083c13d 1e84a23 9ac9ec3 1e84a23 720aaa6 1e84a23 9ac9ec3 1e84a23 b760ace 9ac9ec3 1e84a23 4e65052 9ac9ec3 62d77a1 9ac9ec3 46c43b7 62d77a1 1e84a23 b760ace bd88e7f 1e84a23 7ebb5e5 1e84a23 9ac9ec3 62d77a1 9ac9ec3 4e65052 9ac9ec3 62d77a1 1e84a23 b545ee3 9ac9ec3 46c43b7 62d77a1 1e84a23 b760ace 720aaa6 1e84a23 7ebb5e5 b545ee3 62d77a1 b545ee3 62d77a1 b545ee3 62d77a1 b545ee3 9ac9ec3 62d77a1 083c13d 62d77a1 9ac9ec3 720aaa6 b545ee3 4e65052 b545ee3 62d77a1 b545ee3 62d77a1 b545ee3 62d77a1 4e65052 62d77a1 b545ee3 1e84a23 9ac9ec3 1e84a23 b760ace 1b475c1 1e84a23 9ac9ec3 1e84a23 b760ace 79d8f1f 1e84a23 9d7c778 b545ee3 1e84a23 9ac9ec3 1e84a23 79d8f1f 1e84a23 9d7c778 1e84a23 cff7d2a 1e84a23 cce7e78 cff7d2a 3aeb57d 38c779b 3aeb57d 38c779b cff7d2a 38c779b 3aeb57d cff7d2a 9d7c778 1e84a23 9ac9ec3 1e84a23 9b91db6 1e84a23 8a81839 1e84a23 9d7c778 1e84a23 bcac052 9b91db6 bcac052 1e84a23 9ac9ec3 46c43b7 62d77a1 1e84a23 9ac9ec3 78cf488 1e84a23 7ebb5e5 1e84a23 62d77a1 1e84a23 741cd0e 3a42abd 62d77a1 083c13d 62d77a1 083c13d 9d7c778 62d77a1 9d7c778 3a42abd 9d7c778 62d77a1 9d7c778 4e65052 9d7c778 62d77a1 9d7c778 3a42abd 9d7c778 3a42abd 9ac9ec3 3a42abd 9ac9ec3 3a42abd 9ac9ec3 62d77a1 1e84a23 62d77a1 3a42abd 62d77a1 083c13d 62d77a1 4e65052 62d77a1 3a42abd 1e84a23 33a67b4 720aaa6 1e84a23 62d77a1 9d7c778 1e84a23 083c13d 62d77a1 1e84a23 083c13d 62d77a1 1e84a23 083c13d 62d77a1 6b718e9 62d77a1 4e65052 62d77a1 1e84a23 bd5cfff 1e84a23 9ac9ec3 1e84a23 cf58130 9ac9ec3 877b826 9ac9ec3 877b826 9ac9ec3 1916226 1e84a23 9ac9ec3 1e84a23 bd5cfff 9ac9ec3 8acb573 3764277 bfad364 9cd4642 9ac9ec3 bfad364 720aaa6 9ac9ec3 bfad364 3764277 cf58130 3764277 1a10b0e 1e84a23 b545ee3 9ac9ec3 b545ee3 bd5cfff 9d7c778 9ac9ec3 9d7c778 eeb2bbf 720aaa6 b545ee3 9d7c778 b545ee3 9ac9ec3 b545ee3 9d7c778 b545ee3 9ac9ec3 b545ee3 73cf75f 3eef804 7d56d45 720aaa6 b545ee3 9d7c778 b545ee3 877b826 ee76a68 877b826 b545ee3 9ac9ec3 b545ee3 e83792e b545ee3 46c43b7 d81bc47 62d77a1 46c43b7 720aaa6 62d77a1 9d7c778 62d77a1 b545ee3 9d7c778 b545ee3 b7007d0 bc52ea2 d8f1883 bc52ea2 d8f1883 bc52ea2 095d2c1 b7007d0 e521909 741cd0e b7007d0 d6ae1c8 b3eaf50 d6ae1c8 1e84a23 750c42e |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987 988 989 990 991 992 993 994 995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023 1024 1025 1026 1027 1028 1029 1030 1031 1032 1033 1034 1035 1036 1037 1038 1039 1040 1041 1042 1043 1044 1045 1046 1047 1048 1049 1050 1051 1052 1053 1054 1055 1056 1057 1058 1059 1060 1061 1062 1063 1064 1065 1066 1067 1068 1069 1070 1071 1072 1073 1074 1075 1076 1077 1078 1079 1080 1081 1082 1083 1084 1085 1086 1087 1088 1089 1090 1091 1092 1093 1094 1095 1096 1097 1098 1099 1100 1101 1102 1103 |
{
"nbformat": 4,
"nbformat_minor": 0,
"metadata": {
"colab": {
"name": "YOLOv5 Tutorial",
"provenance": [],
"collapsed_sections": [],
"include_colab_link": true
},
"kernelspec": {
"name": "python3",
"display_name": "Python 3"
},
"accelerator": "GPU",
"widgets": {
"application/vnd.jupyter.widget-state+json": {
"eb95db7cae194218b3fcefb439b6352f": {
"model_module": "@jupyter-widgets/controls",
"model_name": "HBoxModel",
"model_module_version": "1.5.0",
"state": {
"_view_name": "HBoxView",
"_dom_classes": [],
"_model_name": "HBoxModel",
"_view_module": "@jupyter-widgets/controls",
"_model_module_version": "1.5.0",
"_view_count": null,
"_view_module_version": "1.5.0",
"box_style": "",
"layout": "IPY_MODEL_769ecde6f2e64bacb596ce972f8d3d2d",
"_model_module": "@jupyter-widgets/controls",
"children": [
"IPY_MODEL_384a001876054c93b0af45cd1e960bfe",
"IPY_MODEL_dded0aeae74440f7ba2ffa0beb8dd612",
"IPY_MODEL_5296d28be75740b2892ae421bbec3657"
]
}
},
"769ecde6f2e64bacb596ce972f8d3d2d": {
"model_module": "@jupyter-widgets/base",
"model_name": "LayoutModel",
"model_module_version": "1.2.0",
"state": {
"_view_name": "LayoutView",
"grid_template_rows": null,
"right": null,
"justify_content": null,
"_view_module": "@jupyter-widgets/base",
"overflow": null,
"_model_module_version": "1.2.0",
"_view_count": null,
"flex_flow": null,
"width": null,
"min_width": null,
"border": null,
"align_items": null,
"bottom": null,
"_model_module": "@jupyter-widgets/base",
"top": null,
"grid_column": null,
"overflow_y": null,
"overflow_x": null,
"grid_auto_flow": null,
"grid_area": null,
"grid_template_columns": null,
"flex": null,
"_model_name": "LayoutModel",
"justify_items": null,
"grid_row": null,
"max_height": null,
"align_content": null,
"visibility": null,
"align_self": null,
"height": null,
"min_height": null,
"padding": null,
"grid_auto_rows": null,
"grid_gap": null,
"max_width": null,
"order": null,
"_view_module_version": "1.2.0",
"grid_template_areas": null,
"object_position": null,
"object_fit": null,
"grid_auto_columns": null,
"margin": null,
"display": null,
"left": null
}
},
"384a001876054c93b0af45cd1e960bfe": {
"model_module": "@jupyter-widgets/controls",
"model_name": "HTMLModel",
"model_module_version": "1.5.0",
"state": {
"_view_name": "HTMLView",
"style": "IPY_MODEL_9f09facb2a6c4a7096810d327c8b551c",
"_dom_classes": [],
"description": "",
"_model_name": "HTMLModel",
"placeholder": "",
"_view_module": "@jupyter-widgets/controls",
"_model_module_version": "1.5.0",
"value": "100%",
"_view_count": null,
"_view_module_version": "1.5.0",
"description_tooltip": null,
"_model_module": "@jupyter-widgets/controls",
"layout": "IPY_MODEL_25621cff5d16448cb7260e839fd0f543"
}
},
"dded0aeae74440f7ba2ffa0beb8dd612": {
"model_module": "@jupyter-widgets/controls",
"model_name": "FloatProgressModel",
"model_module_version": "1.5.0",
"state": {
"_view_name": "ProgressView",
"style": "IPY_MODEL_0ce7164fc0c74bb9a2b5c7037375a727",
"_dom_classes": [],
"description": "",
"_model_name": "FloatProgressModel",
"bar_style": "success",
"max": 818322941,
"_view_module": "@jupyter-widgets/controls",
"_model_module_version": "1.5.0",
"value": 818322941,
"_view_count": null,
"_view_module_version": "1.5.0",
"orientation": "horizontal",
"min": 0,
"description_tooltip": null,
"_model_module": "@jupyter-widgets/controls",
"layout": "IPY_MODEL_c4c4593c10904cb5b8a5724d60c7e181"
}
},
"5296d28be75740b2892ae421bbec3657": {
"model_module": "@jupyter-widgets/controls",
"model_name": "HTMLModel",
"model_module_version": "1.5.0",
"state": {
"_view_name": "HTMLView",
"style": "IPY_MODEL_473371611126476c88d5d42ec7031ed6",
"_dom_classes": [],
"description": "",
"_model_name": "HTMLModel",
"placeholder": "",
"_view_module": "@jupyter-widgets/controls",
"_model_module_version": "1.5.0",
"value": " 780M/780M [00:11<00:00, 91.9MB/s]",
"_view_count": null,
"_view_module_version": "1.5.0",
"description_tooltip": null,
"_model_module": "@jupyter-widgets/controls",
"layout": "IPY_MODEL_65efdfd0d26c46e79c8c5ff3b77126cc"
}
},
"9f09facb2a6c4a7096810d327c8b551c": {
"model_module": "@jupyter-widgets/controls",
"model_name": "DescriptionStyleModel",
"model_module_version": "1.5.0",
"state": {
"_view_name": "StyleView",
"_model_name": "DescriptionStyleModel",
"description_width": "",
"_view_module": "@jupyter-widgets/base",
"_model_module_version": "1.5.0",
"_view_count": null,
"_view_module_version": "1.2.0",
"_model_module": "@jupyter-widgets/controls"
}
},
"25621cff5d16448cb7260e839fd0f543": {
"model_module": "@jupyter-widgets/base",
"model_name": "LayoutModel",
"model_module_version": "1.2.0",
"state": {
"_view_name": "LayoutView",
"grid_template_rows": null,
"right": null,
"justify_content": null,
"_view_module": "@jupyter-widgets/base",
"overflow": null,
"_model_module_version": "1.2.0",
"_view_count": null,
"flex_flow": null,
"width": null,
"min_width": null,
"border": null,
"align_items": null,
"bottom": null,
"_model_module": "@jupyter-widgets/base",
"top": null,
"grid_column": null,
"overflow_y": null,
"overflow_x": null,
"grid_auto_flow": null,
"grid_area": null,
"grid_template_columns": null,
"flex": null,
"_model_name": "LayoutModel",
"justify_items": null,
"grid_row": null,
"max_height": null,
"align_content": null,
"visibility": null,
"align_self": null,
"height": null,
"min_height": null,
"padding": null,
"grid_auto_rows": null,
"grid_gap": null,
"max_width": null,
"order": null,
"_view_module_version": "1.2.0",
"grid_template_areas": null,
"object_position": null,
"object_fit": null,
"grid_auto_columns": null,
"margin": null,
"display": null,
"left": null
}
},
"0ce7164fc0c74bb9a2b5c7037375a727": {
"model_module": "@jupyter-widgets/controls",
"model_name": "ProgressStyleModel",
"model_module_version": "1.5.0",
"state": {
"_view_name": "StyleView",
"_model_name": "ProgressStyleModel",
"description_width": "",
"_view_module": "@jupyter-widgets/base",
"_model_module_version": "1.5.0",
"_view_count": null,
"_view_module_version": "1.2.0",
"bar_color": null,
"_model_module": "@jupyter-widgets/controls"
}
},
"c4c4593c10904cb5b8a5724d60c7e181": {
"model_module": "@jupyter-widgets/base",
"model_name": "LayoutModel",
"model_module_version": "1.2.0",
"state": {
"_view_name": "LayoutView",
"grid_template_rows": null,
"right": null,
"justify_content": null,
"_view_module": "@jupyter-widgets/base",
"overflow": null,
"_model_module_version": "1.2.0",
"_view_count": null,
"flex_flow": null,
"width": null,
"min_width": null,
"border": null,
"align_items": null,
"bottom": null,
"_model_module": "@jupyter-widgets/base",
"top": null,
"grid_column": null,
"overflow_y": null,
"overflow_x": null,
"grid_auto_flow": null,
"grid_area": null,
"grid_template_columns": null,
"flex": null,
"_model_name": "LayoutModel",
"justify_items": null,
"grid_row": null,
"max_height": null,
"align_content": null,
"visibility": null,
"align_self": null,
"height": null,
"min_height": null,
"padding": null,
"grid_auto_rows": null,
"grid_gap": null,
"max_width": null,
"order": null,
"_view_module_version": "1.2.0",
"grid_template_areas": null,
"object_position": null,
"object_fit": null,
"grid_auto_columns": null,
"margin": null,
"display": null,
"left": null
}
},
"473371611126476c88d5d42ec7031ed6": {
"model_module": "@jupyter-widgets/controls",
"model_name": "DescriptionStyleModel",
"model_module_version": "1.5.0",
"state": {
"_view_name": "StyleView",
"_model_name": "DescriptionStyleModel",
"description_width": "",
"_view_module": "@jupyter-widgets/base",
"_model_module_version": "1.5.0",
"_view_count": null,
"_view_module_version": "1.2.0",
"_model_module": "@jupyter-widgets/controls"
}
},
"65efdfd0d26c46e79c8c5ff3b77126cc": {
"model_module": "@jupyter-widgets/base",
"model_name": "LayoutModel",
"model_module_version": "1.2.0",
"state": {
"_view_name": "LayoutView",
"grid_template_rows": null,
"right": null,
"justify_content": null,
"_view_module": "@jupyter-widgets/base",
"overflow": null,
"_model_module_version": "1.2.0",
"_view_count": null,
"flex_flow": null,
"width": null,
"min_width": null,
"border": null,
"align_items": null,
"bottom": null,
"_model_module": "@jupyter-widgets/base",
"top": null,
"grid_column": null,
"overflow_y": null,
"overflow_x": null,
"grid_auto_flow": null,
"grid_area": null,
"grid_template_columns": null,
"flex": null,
"_model_name": "LayoutModel",
"justify_items": null,
"grid_row": null,
"max_height": null,
"align_content": null,
"visibility": null,
"align_self": null,
"height": null,
"min_height": null,
"padding": null,
"grid_auto_rows": null,
"grid_gap": null,
"max_width": null,
"order": null,
"_view_module_version": "1.2.0",
"grid_template_areas": null,
"object_position": null,
"object_fit": null,
"grid_auto_columns": null,
"margin": null,
"display": null,
"left": null
}
}
}
}
},
"cells": [
{
"cell_type": "markdown",
"metadata": {
"id": "view-in-github",
"colab_type": "text"
},
"source": [
"<a href=\"https://colab.research.google.com/github/ultralytics/yolov5/blob/master/tutorial.ipynb\" target=\"_parent\"><img src=\"https://colab.research.google.com/assets/colab-badge.svg\" alt=\"Open In Colab\"/></a>"
]
},
{
"cell_type": "markdown",
"metadata": {
"id": "t6MPjfT5NrKQ"
},
"source": [
"<a align=\"left\" href=\"https://ultralytics.com/yolov5\" target=\"_blank\">\n",
"<img width=\"1024\", src=\"https://user-images.githubusercontent.com/26833433/125273437-35b3fc00-e30d-11eb-9079-46f313325424.png\"></a>\n",
"\n",
"This is the **official YOLOv5 🚀 notebook** by **Ultralytics**, and is freely available for redistribution under the [GPL-3.0 license](https://choosealicense.com/licenses/gpl-3.0/). \n",
"For more information please visit https://github.com/ultralytics/yolov5 and https://ultralytics.com. Thank you!"
]
},
{
"cell_type": "markdown",
"metadata": {
"id": "7mGmQbAO5pQb"
},
"source": [
"# Setup\n",
"\n",
"Clone repo, install dependencies and check PyTorch and GPU."
]
},
{
"cell_type": "code",
"metadata": {
"id": "wbvMlHd_QwMG",
"colab": {
"base_uri": "https://localhost:8080/"
},
"outputId": "3809e5a9-dd41-4577-fe62-5531abf7cca2"
},
"source": [
"!git clone https://github.com/ultralytics/yolov5 # clone\n",
"%cd yolov5\n",
"%pip install -qr requirements.txt # install\n",
"\n",
"import torch\n",
"from yolov5 import utils\n",
"display = utils.notebook_init() # checks"
],
"execution_count": null,
"outputs": [
{
"output_type": "stream",
"name": "stdout",
"text": [
"YOLOv5 🚀 v6.0-48-g84a8099 torch 1.10.0+cu102 CUDA:0 (Tesla V100-SXM2-16GB, 16160MiB)\n",
"Setup complete ✅ (2 CPUs, 12.7 GB RAM, 42.2/166.8 GB disk)\n"
]
}
]
},
{
"cell_type": "markdown",
"metadata": {
"id": "4JnkELT0cIJg"
},
"source": [
"# 1. Inference\n",
"\n",
"`detect.py` runs YOLOv5 inference on a variety of sources, downloading models automatically from the [latest YOLOv5 release](https://github.com/ultralytics/yolov5/releases), and saving results to `runs/detect`. Example inference sources are:\n",
"\n",
"```shell\n",
"python detect.py --source 0 # webcam\n",
" img.jpg # image \n",
" vid.mp4 # video\n",
" path/ # directory\n",
" path/*.jpg # glob\n",
" 'https://youtu.be/Zgi9g1ksQHc' # YouTube\n",
" 'rtsp://example.com/media.mp4' # RTSP, RTMP, HTTP stream\n",
"```"
]
},
{
"cell_type": "code",
"metadata": {
"id": "zR9ZbuQCH7FX",
"colab": {
"base_uri": "https://localhost:8080/"
},
"outputId": "8f7e6588-215d-4ebd-93af-88b871e770a7"
},
"source": [
"!python detect.py --weights yolov5s.pt --img 640 --conf 0.25 --source data/images\n",
"display.Image(filename='runs/detect/exp/zidane.jpg', width=600)"
],
"execution_count": null,
"outputs": [
{
"output_type": "stream",
"name": "stdout",
"text": [
"\u001b[34m\u001b[1mdetect: \u001b[0mweights=['yolov5s.pt'], source=data/images, imgsz=[640, 640], conf_thres=0.25, iou_thres=0.45, max_det=1000, device=, view_img=False, save_txt=False, save_conf=False, save_crop=False, nosave=False, classes=None, agnostic_nms=False, augment=False, visualize=False, update=False, project=runs/detect, name=exp, exist_ok=False, line_thickness=3, hide_labels=False, hide_conf=False, half=False, dnn=False\n",
"YOLOv5 🚀 v6.0-48-g84a8099 torch 1.10.0+cu102 CUDA:0 (Tesla V100-SXM2-16GB, 16160MiB)\n",
"\n",
"Fusing layers... \n",
"Model Summary: 213 layers, 7225885 parameters, 0 gradients\n",
"image 1/2 /content/yolov5/data/images/bus.jpg: 640x480 4 persons, 1 bus, Done. (0.007s)\n",
"image 2/2 /content/yolov5/data/images/zidane.jpg: 384x640 2 persons, 1 tie, Done. (0.007s)\n",
"Speed: 0.5ms pre-process, 6.9ms inference, 1.3ms NMS per image at shape (1, 3, 640, 640)\n",
"Results saved to \u001b[1mruns/detect/exp\u001b[0m\n"
]
}
]
},
{
"cell_type": "markdown",
"metadata": {
"id": "hkAzDWJ7cWTr"
},
"source": [
" \n",
"<img align=\"left\" src=\"https://user-images.githubusercontent.com/26833433/127574988-6a558aa1-d268-44b9-bf6b-62d4c605cc72.jpg\" width=\"600\">"
]
},
{
"cell_type": "markdown",
"metadata": {
"id": "0eq1SMWl6Sfn"
},
"source": [
"# 2. Validate\n",
"Validate a model's accuracy on [COCO](https://cocodataset.org/#home) val or test-dev datasets. Models are downloaded automatically from the [latest YOLOv5 release](https://github.com/ultralytics/yolov5/releases). To show results by class use the `--verbose` flag. Note that `pycocotools` metrics may be ~1% better than the equivalent repo metrics, as is visible below, due to slight differences in mAP computation."
]
},
{
"cell_type": "markdown",
"metadata": {
"id": "eyTZYGgRjnMc"
},
"source": [
"## COCO val\n",
"Download [COCO val 2017](https://github.com/ultralytics/yolov5/blob/74b34872fdf41941cddcf243951cdb090fbac17b/data/coco.yaml#L14) dataset (1GB - 5000 images), and test model accuracy."
]
},
{
"cell_type": "code",
"metadata": {
"id": "WQPtK1QYVaD_",
"colab": {
"base_uri": "https://localhost:8080/",
"height": 48,
"referenced_widgets": [
"eb95db7cae194218b3fcefb439b6352f",
"769ecde6f2e64bacb596ce972f8d3d2d",
"384a001876054c93b0af45cd1e960bfe",
"dded0aeae74440f7ba2ffa0beb8dd612",
"5296d28be75740b2892ae421bbec3657",
"9f09facb2a6c4a7096810d327c8b551c",
"25621cff5d16448cb7260e839fd0f543",
"0ce7164fc0c74bb9a2b5c7037375a727",
"c4c4593c10904cb5b8a5724d60c7e181",
"473371611126476c88d5d42ec7031ed6",
"65efdfd0d26c46e79c8c5ff3b77126cc"
]
},
"outputId": "bcf9a448-1f9b-4a41-ad49-12f181faf05a"
},
"source": [
"# Download COCO val\n",
"torch.hub.download_url_to_file('https://ultralytics.com/assets/coco2017val.zip', 'tmp.zip')\n",
"!unzip -q tmp.zip -d ../datasets && rm tmp.zip"
],
"execution_count": null,
"outputs": [
{
"output_type": "display_data",
"data": {
"application/vnd.jupyter.widget-view+json": {
"model_id": "eb95db7cae194218b3fcefb439b6352f",
"version_minor": 0,
"version_major": 2
},
"text/plain": [
" 0%| | 0.00/780M [00:00<?, ?B/s]"
]
},
"metadata": {}
}
]
},
{
"cell_type": "code",
"metadata": {
"id": "X58w8JLpMnjH",
"colab": {
"base_uri": "https://localhost:8080/"
},
"outputId": "74f1dfa9-6b6d-4b36-f67e-bbae243869f9"
},
"source": [
"# Run YOLOv5x on COCO val\n",
"!python val.py --weights yolov5x.pt --data coco.yaml --img 640 --iou 0.65 --half"
],
"execution_count": null,
"outputs": [
{
"output_type": "stream",
"name": "stdout",
"text": [
"\u001b[34m\u001b[1mval: \u001b[0mdata=/content/yolov5/data/coco.yaml, weights=['yolov5x.pt'], batch_size=32, imgsz=640, conf_thres=0.001, iou_thres=0.65, task=val, device=, single_cls=False, augment=False, verbose=False, save_txt=False, save_hybrid=False, save_conf=False, save_json=True, project=runs/val, name=exp, exist_ok=False, half=True\n",
"YOLOv5 🚀 v6.0-48-g84a8099 torch 1.10.0+cu102 CUDA:0 (Tesla V100-SXM2-16GB, 16160MiB)\n",
"\n",
"Downloading https://github.com/ultralytics/yolov5/releases/download/v6.0/yolov5x.pt to yolov5x.pt...\n",
"100% 166M/166M [00:03<00:00, 54.1MB/s]\n",
"\n",
"Fusing layers... \n",
"Model Summary: 444 layers, 86705005 parameters, 0 gradients\n",
"\u001b[34m\u001b[1mval: \u001b[0mScanning '../datasets/coco/val2017' images and labels...4952 found, 48 missing, 0 empty, 0 corrupted: 100% 5000/5000 [00:01<00:00, 2636.64it/s]\n",
"\u001b[34m\u001b[1mval: \u001b[0mNew cache created: ../datasets/coco/val2017.cache\n",
" Class Images Labels P R [email protected] [email protected]:.95: 100% 157/157 [01:12<00:00, 2.17it/s]\n",
" all 5000 36335 0.729 0.63 0.683 0.496\n",
"Speed: 0.1ms pre-process, 4.9ms inference, 1.9ms NMS per image at shape (32, 3, 640, 640)\n",
"\n",
"Evaluating pycocotools mAP... saving runs/val/exp/yolov5x_predictions.json...\n",
"loading annotations into memory...\n",
"Done (t=0.46s)\n",
"creating index...\n",
"index created!\n",
"Loading and preparing results...\n",
"DONE (t=5.15s)\n",
"creating index...\n",
"index created!\n",
"Running per image evaluation...\n",
"Evaluate annotation type *bbox*\n",
"DONE (t=90.39s).\n",
"Accumulating evaluation results...\n",
"DONE (t=14.54s).\n",
" Average Precision (AP) @[ IoU=0.50:0.95 | area= all | maxDets=100 ] = 0.507\n",
" Average Precision (AP) @[ IoU=0.50 | area= all | maxDets=100 ] = 0.689\n",
" Average Precision (AP) @[ IoU=0.75 | area= all | maxDets=100 ] = 0.552\n",
" Average Precision (AP) @[ IoU=0.50:0.95 | area= small | maxDets=100 ] = 0.345\n",
" Average Precision (AP) @[ IoU=0.50:0.95 | area=medium | maxDets=100 ] = 0.559\n",
" Average Precision (AP) @[ IoU=0.50:0.95 | area= large | maxDets=100 ] = 0.652\n",
" Average Recall (AR) @[ IoU=0.50:0.95 | area= all | maxDets= 1 ] = 0.381\n",
" Average Recall (AR) @[ IoU=0.50:0.95 | area= all | maxDets= 10 ] = 0.630\n",
" Average Recall (AR) @[ IoU=0.50:0.95 | area= all | maxDets=100 ] = 0.682\n",
" Average Recall (AR) @[ IoU=0.50:0.95 | area= small | maxDets=100 ] = 0.526\n",
" Average Recall (AR) @[ IoU=0.50:0.95 | area=medium | maxDets=100 ] = 0.732\n",
" Average Recall (AR) @[ IoU=0.50:0.95 | area= large | maxDets=100 ] = 0.829\n",
"Results saved to \u001b[1mruns/val/exp\u001b[0m\n"
]
}
]
},
{
"cell_type": "markdown",
"metadata": {
"id": "rc_KbFk0juX2"
},
"source": [
"## COCO test\n",
"Download [COCO test2017](https://github.com/ultralytics/yolov5/blob/74b34872fdf41941cddcf243951cdb090fbac17b/data/coco.yaml#L15) dataset (7GB - 40,000 images), to test model accuracy on test-dev set (**20,000 images, no labels**). Results are saved to a `*.json` file which should be **zipped** and submitted to the evaluation server at https://competitions.codalab.org/competitions/20794."
]
},
{
"cell_type": "code",
"metadata": {
"id": "V0AJnSeCIHyJ"
},
"source": [
"# Download COCO test-dev2017\n",
"torch.hub.download_url_to_file('https://ultralytics.com/assets/coco2017labels.zip', 'tmp.zip')\n",
"!unzip -q tmp.zip -d ../datasets && rm tmp.zip\n",
"!f=\"test2017.zip\" && curl http://images.cocodataset.org/zips/$f -o $f && unzip -q $f -d ../datasets/coco/images"
],
"execution_count": null,
"outputs": []
},
{
"cell_type": "code",
"metadata": {
"id": "29GJXAP_lPrt"
},
"source": [
"# Run YOLOv5x on COCO test\n",
"!python val.py --weights yolov5x.pt --data coco.yaml --img 640 --iou 0.65 --half --task test"
],
"execution_count": null,
"outputs": []
},
{
"cell_type": "markdown",
"metadata": {
"id": "ZY2VXXXu74w5"
},
"source": [
"# 3. Train\n",
"\n",
"<p align=\"\"><a href=\"https://roboflow.com/?ref=ultralytics\"><img width=\"1000\" src=\"https://uploads-ssl.webflow.com/5f6bc60e665f54545a1e52a5/615627e5824c9c6195abfda9_computer-vision-cycle.png\"/></a></p>\n",
"Close the active learning loop by sampling images from your inference conditions with the `roboflow` pip package\n",
"<br><br>\n",
"\n",
"Train a YOLOv5s model on the [COCO128](https://www.kaggle.com/ultralytics/coco128) dataset with `--data coco128.yaml`, starting from pretrained `--weights yolov5s.pt`, or from randomly initialized `--weights '' --cfg yolov5s.yaml`.\n",
"\n",
"- **Pretrained [Models](https://github.com/ultralytics/yolov5/tree/master/models)** are downloaded\n",
"automatically from the [latest YOLOv5 release](https://github.com/ultralytics/yolov5/releases)\n",
"- **[Datasets](https://github.com/ultralytics/yolov5/tree/master/data)** available for autodownload include: [COCO](https://github.com/ultralytics/yolov5/blob/master/data/coco.yaml), [COCO128](https://github.com/ultralytics/yolov5/blob/master/data/coco128.yaml), [VOC](https://github.com/ultralytics/yolov5/blob/master/data/VOC.yaml), [Argoverse](https://github.com/ultralytics/yolov5/blob/master/data/Argoverse.yaml), [VisDrone](https://github.com/ultralytics/yolov5/blob/master/data/VisDrone.yaml), [GlobalWheat](https://github.com/ultralytics/yolov5/blob/master/data/GlobalWheat2020.yaml), [xView](https://github.com/ultralytics/yolov5/blob/master/data/xView.yaml), [Objects365](https://github.com/ultralytics/yolov5/blob/master/data/Objects365.yaml), [SKU-110K](https://github.com/ultralytics/yolov5/blob/master/data/SKU-110K.yaml).\n",
"- **Training Results** are saved to `runs/train/` with incrementing run directories, i.e. `runs/train/exp2`, `runs/train/exp3` etc.\n",
"<br><br>\n",
"\n",
"## Train on Custom Data with Roboflow 🌟 NEW\n",
"\n",
"[Roboflow](https://roboflow.com/?ref=ultralytics) enables you to easily **organize, label, and prepare** a high quality dataset with your own custom data. Roboflow also makes it easy to establish an active learning pipeline, collaborate with your team on dataset improvement, and integrate directly into your model building workflow with the `roboflow` pip package.\n",
"\n",
"- Custom Training Example: [https://blog.roboflow.com/how-to-train-yolov5-on-a-custom-dataset/](https://blog.roboflow.com/how-to-train-yolov5-on-a-custom-dataset/?ref=ultralytics)\n",
"- Custom Training Notebook: [![Open In Colab](https://colab.research.google.com/assets/colab-badge.svg)](https://colab.research.google.com/github/roboflow-ai/yolov5-custom-training-tutorial/blob/main/yolov5-custom-training.ipynb)\n",
"<br>\n",
"\n",
"<p align=\"\"><a href=\"https://roboflow.com/?ref=ultralytics\"><img width=\"480\" src=\"https://uploads-ssl.webflow.com/5f6bc60e665f54545a1e52a5/6152a275ad4b4ac20cd2e21a_roboflow-annotate.gif\"/></a></p>Label images lightning fast (including with model-assisted labeling)"
]
},
{
"cell_type": "code",
"metadata": {
"id": "bOy5KI2ncnWd"
},
"source": [
"# Tensorboard (optional)\n",
"%load_ext tensorboard\n",
"%tensorboard --logdir runs/train"
],
"execution_count": null,
"outputs": []
},
{
"cell_type": "code",
"metadata": {
"id": "2fLAV42oNb7M"
},
"source": [
"# Weights & Biases (optional)\n",
"%pip install -q wandb\n",
"import wandb\n",
"wandb.login()"
],
"execution_count": null,
"outputs": []
},
{
"cell_type": "code",
"metadata": {
"id": "1NcFxRcFdJ_O",
"colab": {
"base_uri": "https://localhost:8080/"
},
"outputId": "8724d13d-6711-4a12-d96a-1c655e5c3549"
},
"source": [
"# Train YOLOv5s on COCO128 for 3 epochs\n",
"!python train.py --img 640 --batch 16 --epochs 3 --data coco128.yaml --weights yolov5s.pt --cache"
],
"execution_count": null,
"outputs": [
{
"output_type": "stream",
"name": "stdout",
"text": [
"\u001b[34m\u001b[1mtrain: \u001b[0mweights=yolov5s.pt, cfg=, data=coco128.yaml, hyp=data/hyps/hyp.scratch-low.yaml, epochs=3, batch_size=16, imgsz=640, rect=False, resume=False, nosave=False, noval=False, noautoanchor=False, evolve=None, bucket=, cache=ram, image_weights=False, device=, multi_scale=False, single_cls=False, adam=False, sync_bn=False, workers=8, project=runs/train, name=exp, exist_ok=False, quad=False, linear_lr=False, label_smoothing=0.0, patience=100, freeze=0, save_period=-1, local_rank=-1, entity=None, upload_dataset=False, bbox_interval=-1, artifact_alias=latest\n",
"\u001b[34m\u001b[1mgithub: \u001b[0mup to date with https://github.com/ultralytics/yolov5 ✅\n",
"YOLOv5 🚀 v6.0-48-g84a8099 torch 1.10.0+cu102 CUDA:0 (Tesla V100-SXM2-16GB, 16160MiB)\n",
"\n",
"\u001b[34m\u001b[1mhyperparameters: \u001b[0mlr0=0.01, lrf=0.1, momentum=0.937, weight_decay=0.0005, warmup_epochs=3.0, warmup_momentum=0.8, warmup_bias_lr=0.1, box=0.05, cls=0.5, cls_pw=1.0, obj=1.0, obj_pw=1.0, iou_t=0.2, anchor_t=4.0, fl_gamma=0.0, hsv_h=0.015, hsv_s=0.7, hsv_v=0.4, degrees=0.0, translate=0.1, scale=0.5, shear=0.0, perspective=0.0, flipud=0.0, fliplr=0.5, mosaic=1.0, mixup=0.0, copy_paste=0.0\n",
"\u001b[34m\u001b[1mWeights & Biases: \u001b[0mrun 'pip install wandb' to automatically track and visualize YOLOv5 🚀 runs (RECOMMENDED)\n",
"\u001b[34m\u001b[1mTensorBoard: \u001b[0mStart with 'tensorboard --logdir runs/train', view at http://localhost:6006/\n",
"\n",
" from n params module arguments \n",
" 0 -1 1 3520 models.common.Conv [3, 32, 6, 2, 2] \n",
" 1 -1 1 18560 models.common.Conv [32, 64, 3, 2] \n",
" 2 -1 1 18816 models.common.C3 [64, 64, 1] \n",
" 3 -1 1 73984 models.common.Conv [64, 128, 3, 2] \n",
" 4 -1 2 115712 models.common.C3 [128, 128, 2] \n",
" 5 -1 1 295424 models.common.Conv [128, 256, 3, 2] \n",
" 6 -1 3 625152 models.common.C3 [256, 256, 3] \n",
" 7 -1 1 1180672 models.common.Conv [256, 512, 3, 2] \n",
" 8 -1 1 1182720 models.common.C3 [512, 512, 1] \n",
" 9 -1 1 656896 models.common.SPPF [512, 512, 5] \n",
" 10 -1 1 131584 models.common.Conv [512, 256, 1, 1] \n",
" 11 -1 1 0 torch.nn.modules.upsampling.Upsample [None, 2, 'nearest'] \n",
" 12 [-1, 6] 1 0 models.common.Concat [1] \n",
" 13 -1 1 361984 models.common.C3 [512, 256, 1, False] \n",
" 14 -1 1 33024 models.common.Conv [256, 128, 1, 1] \n",
" 15 -1 1 0 torch.nn.modules.upsampling.Upsample [None, 2, 'nearest'] \n",
" 16 [-1, 4] 1 0 models.common.Concat [1] \n",
" 17 -1 1 90880 models.common.C3 [256, 128, 1, False] \n",
" 18 -1 1 147712 models.common.Conv [128, 128, 3, 2] \n",
" 19 [-1, 14] 1 0 models.common.Concat [1] \n",
" 20 -1 1 296448 models.common.C3 [256, 256, 1, False] \n",
" 21 -1 1 590336 models.common.Conv [256, 256, 3, 2] \n",
" 22 [-1, 10] 1 0 models.common.Concat [1] \n",
" 23 -1 1 1182720 models.common.C3 [512, 512, 1, False] \n",
" 24 [17, 20, 23] 1 229245 models.yolo.Detect [80, [[10, 13, 16, 30, 33, 23], [30, 61, 62, 45, 59, 119], [116, 90, 156, 198, 373, 326]], [128, 256, 512]]\n",
"Model Summary: 270 layers, 7235389 parameters, 7235389 gradients, 16.5 GFLOPs\n",
"\n",
"Transferred 349/349 items from yolov5s.pt\n",
"Scaled weight_decay = 0.0005\n",
"\u001b[34m\u001b[1moptimizer:\u001b[0m SGD with parameter groups 57 weight, 60 weight (no decay), 60 bias\n",
"\u001b[34m\u001b[1malbumentations: \u001b[0mversion 1.0.3 required by YOLOv5, but version 0.1.12 is currently installed\n",
"\u001b[34m\u001b[1mtrain: \u001b[0mScanning '../datasets/coco128/labels/train2017.cache' images and labels... 128 found, 0 missing, 2 empty, 0 corrupted: 100% 128/128 [00:00<?, ?it/s]\n",
"\u001b[34m\u001b[1mtrain: \u001b[0mCaching images (0.1GB ram): 100% 128/128 [00:00<00:00, 296.04it/s]\n",
"\u001b[34m\u001b[1mval: \u001b[0mScanning '../datasets/coco128/labels/train2017.cache' images and labels... 128 found, 0 missing, 2 empty, 0 corrupted: 100% 128/128 [00:00<?, ?it/s]\n",
"\u001b[34m\u001b[1mval: \u001b[0mCaching images (0.1GB ram): 100% 128/128 [00:01<00:00, 121.58it/s]\n",
"Plotting labels... \n",
"\n",
"\u001b[34m\u001b[1mAutoAnchor: \u001b[0mAnalyzing anchors... anchors/target = 4.27, Best Possible Recall (BPR) = 0.9935\n",
"Image sizes 640 train, 640 val\n",
"Using 2 dataloader workers\n",
"Logging results to \u001b[1mruns/train/exp\u001b[0m\n",
"Starting training for 3 epochs...\n",
"\n",
" Epoch gpu_mem box obj cls labels img_size\n",
" 0/2 3.62G 0.04621 0.0711 0.02112 203 640: 100% 8/8 [00:04<00:00, 1.99it/s]\n",
" Class Images Labels P R [email protected] [email protected]:.95: 100% 4/4 [00:00<00:00, 4.37it/s]\n",
" all 128 929 0.655 0.547 0.622 0.41\n",
"\n",
" Epoch gpu_mem box obj cls labels img_size\n",
" 1/2 5.31G 0.04564 0.06898 0.02116 143 640: 100% 8/8 [00:01<00:00, 4.77it/s]\n",
" Class Images Labels P R [email protected] [email protected]:.95: 100% 4/4 [00:00<00:00, 4.27it/s]\n",
" all 128 929 0.68 0.554 0.632 0.419\n",
"\n",
" Epoch gpu_mem box obj cls labels img_size\n",
" 2/2 5.31G 0.04487 0.06883 0.01998 253 640: 100% 8/8 [00:01<00:00, 4.91it/s]\n",
" Class Images Labels P R [email protected] [email protected]:.95: 100% 4/4 [00:00<00:00, 4.30it/s]\n",
" all 128 929 0.71 0.544 0.629 0.423\n",
"\n",
"3 epochs completed in 0.003 hours.\n",
"Optimizer stripped from runs/train/exp/weights/last.pt, 14.9MB\n",
"Optimizer stripped from runs/train/exp/weights/best.pt, 14.9MB\n",
"\n",
"Validating runs/train/exp/weights/best.pt...\n",
"Fusing layers... \n",
"Model Summary: 213 layers, 7225885 parameters, 0 gradients, 16.5 GFLOPs\n",
" Class Images Labels P R [email protected] [email protected]:.95: 100% 4/4 [00:03<00:00, 1.04it/s]\n",
" all 128 929 0.71 0.544 0.63 0.423\n",
" person 128 254 0.816 0.669 0.774 0.507\n",
" bicycle 128 6 0.799 0.667 0.614 0.371\n",
" car 128 46 0.803 0.355 0.486 0.209\n",
" motorcycle 128 5 0.704 0.6 0.791 0.583\n",
" airplane 128 6 1 0.795 0.995 0.717\n",
" bus 128 7 0.656 0.714 0.72 0.606\n",
" train 128 3 0.852 1 0.995 0.682\n",
" truck 128 12 0.521 0.25 0.395 0.215\n",
" boat 128 6 0.795 0.333 0.445 0.137\n",
" traffic light 128 14 0.576 0.143 0.24 0.161\n",
" stop sign 128 2 0.636 0.5 0.828 0.713\n",
" bench 128 9 0.972 0.444 0.575 0.25\n",
" bird 128 16 0.939 0.968 0.988 0.645\n",
" cat 128 4 0.984 0.75 0.822 0.694\n",
" dog 128 9 0.888 0.667 0.903 0.54\n",
" horse 128 2 0.689 1 0.995 0.697\n",
" elephant 128 17 0.96 0.882 0.943 0.681\n",
" bear 128 1 0.549 1 0.995 0.995\n",
" zebra 128 4 0.86 1 0.995 0.952\n",
" giraffe 128 9 0.822 0.778 0.905 0.57\n",
" backpack 128 6 1 0.309 0.457 0.195\n",
" umbrella 128 18 0.775 0.576 0.74 0.418\n",
" handbag 128 19 0.628 0.105 0.167 0.111\n",
" tie 128 7 0.96 0.571 0.701 0.441\n",
" suitcase 128 4 1 0.895 0.995 0.621\n",
" frisbee 128 5 0.641 0.8 0.798 0.664\n",
" skis 128 1 0.627 1 0.995 0.497\n",
" snowboard 128 7 0.988 0.714 0.768 0.556\n",
" sports ball 128 6 0.671 0.5 0.579 0.339\n",
" kite 128 10 0.631 0.515 0.598 0.221\n",
" baseball bat 128 4 0.47 0.456 0.277 0.137\n",
" baseball glove 128 7 0.459 0.429 0.334 0.182\n",
" skateboard 128 5 0.7 0.48 0.736 0.548\n",
" tennis racket 128 7 0.559 0.571 0.538 0.315\n",
" bottle 128 18 0.607 0.389 0.484 0.282\n",
" wine glass 128 16 0.722 0.812 0.82 0.385\n",
" cup 128 36 0.881 0.361 0.532 0.312\n",
" fork 128 6 0.384 0.167 0.239 0.191\n",
" knife 128 16 0.908 0.616 0.681 0.443\n",
" spoon 128 22 0.836 0.364 0.536 0.264\n",
" bowl 128 28 0.793 0.536 0.633 0.471\n",
" banana 128 1 0 0 0.142 0.0995\n",
" sandwich 128 2 0 0 0.0951 0.0717\n",
" orange 128 4 1 0 0.67 0.317\n",
" broccoli 128 11 0.345 0.182 0.283 0.243\n",
" carrot 128 24 0.688 0.459 0.612 0.402\n",
" hot dog 128 2 0.424 0.771 0.497 0.473\n",
" pizza 128 5 0.622 1 0.824 0.551\n",
" donut 128 14 0.703 1 0.952 0.853\n",
" cake 128 4 0.733 1 0.945 0.777\n",
" chair 128 35 0.512 0.486 0.488 0.222\n",
" couch 128 6 0.68 0.36 0.746 0.406\n",
" potted plant 128 14 0.797 0.714 0.808 0.482\n",
" bed 128 3 1 0 0.474 0.318\n",
" dining table 128 13 0.852 0.445 0.478 0.315\n",
" toilet 128 2 0.512 0.5 0.554 0.487\n",
" tv 128 2 0.754 1 0.995 0.895\n",
" laptop 128 3 1 0 0.39 0.147\n",
" mouse 128 2 1 0 0.0283 0.0226\n",
" remote 128 8 0.747 0.625 0.636 0.488\n",
" cell phone 128 8 0.555 0.166 0.417 0.222\n",
" microwave 128 3 0.417 1 0.995 0.732\n",
" oven 128 5 0.37 0.4 0.432 0.249\n",
" sink 128 6 0.356 0.167 0.269 0.149\n",
" refrigerator 128 5 0.705 0.8 0.814 0.45\n",
" book 128 29 0.628 0.138 0.298 0.136\n",
" clock 128 9 0.857 0.778 0.893 0.574\n",
" vase 128 2 0.242 1 0.663 0.622\n",
" scissors 128 1 1 0 0.0207 0.00207\n",
" teddy bear 128 21 0.847 0.381 0.622 0.345\n",
" toothbrush 128 5 0.99 0.6 0.662 0.45\n",
"Results saved to \u001b[1mruns/train/exp\u001b[0m\n"
]
}
]
},
{
"cell_type": "markdown",
"metadata": {
"id": "15glLzbQx5u0"
},
"source": [
"# 4. Visualize"
]
},
{
"cell_type": "markdown",
"metadata": {
"id": "DLI1JmHU7B0l"
},
"source": [
"## Weights & Biases Logging 🌟 NEW\n",
"\n",
"[Weights & Biases](https://wandb.ai/site?utm_campaign=repo_yolo_notebook) (W&B) is now integrated with YOLOv5 for real-time visualization and cloud logging of training runs. This allows for better run comparison and introspection, as well improved visibility and collaboration for teams. To enable W&B `pip install wandb`, and then train normally (you will be guided through setup on first use). \n",
"\n",
"During training you will see live updates at [https://wandb.ai/home](https://wandb.ai/home?utm_campaign=repo_yolo_notebook), and you can create and share detailed [Reports](https://wandb.ai/glenn-jocher/yolov5_tutorial/reports/YOLOv5-COCO128-Tutorial-Results--VmlldzozMDI5OTY) of your results. For more information see the [YOLOv5 Weights & Biases Tutorial](https://github.com/ultralytics/yolov5/issues/1289). \n",
"\n",
"<p align=\"left\"><img width=\"900\" alt=\"Weights & Biases dashboard\" src=\"https://user-images.githubusercontent.com/26833433/135390767-c28b050f-8455-4004-adb0-3b730386e2b2.png\"></p>"
]
},
{
"cell_type": "markdown",
"metadata": {
"id": "-WPvRbS5Swl6"
},
"source": [
"## Local Logging\n",
"\n",
"All results are logged by default to `runs/train`, with a new experiment directory created for each new training as `runs/train/exp2`, `runs/train/exp3`, etc. View train and val jpgs to see mosaics, labels, predictions and augmentation effects. Note an Ultralytics **Mosaic Dataloader** is used for training (shown below), which combines 4 images into 1 mosaic during training.\n",
"\n",
"> <img src=\"https://user-images.githubusercontent.com/26833433/131255960-b536647f-7c61-4f60-bbc5-cb2544d71b2a.jpg\" width=\"700\"> \n",
"`train_batch0.jpg` shows train batch 0 mosaics and labels\n",
"\n",
"> <img src=\"https://user-images.githubusercontent.com/26833433/131256748-603cafc7-55d1-4e58-ab26-83657761aed9.jpg\" width=\"700\"> \n",
"`test_batch0_labels.jpg` shows val batch 0 labels\n",
"\n",
"> <img src=\"https://user-images.githubusercontent.com/26833433/131256752-3f25d7a5-7b0f-4bb3-ab78-46343c3800fe.jpg\" width=\"700\"> \n",
"`test_batch0_pred.jpg` shows val batch 0 _predictions_\n",
"\n",
"Training results are automatically logged to [Tensorboard](https://www.tensorflow.org/tensorboard) and [CSV](https://github.com/ultralytics/yolov5/pull/4148) as `results.csv`, which is plotted as `results.png` (below) after training completes. You can also plot any `results.csv` file manually:\n",
"\n",
"```python\n",
"from utils.plots import plot_results \n",
"plot_results('path/to/results.csv') # plot 'results.csv' as 'results.png'\n",
"```\n",
"\n",
"<img align=\"left\" width=\"800\" alt=\"COCO128 Training Results\" src=\"https://user-images.githubusercontent.com/26833433/126906780-8c5e2990-6116-4de6-b78a-367244a33ccf.png\">"
]
},
{
"cell_type": "markdown",
"metadata": {
"id": "Zelyeqbyt3GD"
},
"source": [
"# Environments\n",
"\n",
"YOLOv5 may be run in any of the following up-to-date verified environments (with all dependencies including [CUDA](https://developer.nvidia.com/cuda)/[CUDNN](https://developer.nvidia.com/cudnn), [Python](https://www.python.org/) and [PyTorch](https://pytorch.org/) preinstalled):\n",
"\n",
"- **Google Colab and Kaggle** notebooks with free GPU: <a href=\"https://colab.research.google.com/github/ultralytics/yolov5/blob/master/tutorial.ipynb\"><img src=\"https://colab.research.google.com/assets/colab-badge.svg\" alt=\"Open In Colab\"></a> <a href=\"https://www.kaggle.com/ultralytics/yolov5\"><img src=\"https://kaggle.com/static/images/open-in-kaggle.svg\" alt=\"Open In Kaggle\"></a>\n",
"- **Google Cloud** Deep Learning VM. See [GCP Quickstart Guide](https://github.com/ultralytics/yolov5/wiki/GCP-Quickstart)\n",
"- **Amazon** Deep Learning AMI. See [AWS Quickstart Guide](https://github.com/ultralytics/yolov5/wiki/AWS-Quickstart)\n",
"- **Docker Image**. See [Docker Quickstart Guide](https://github.com/ultralytics/yolov5/wiki/Docker-Quickstart) <a href=\"https://hub.docker.com/r/ultralytics/yolov5\"><img src=\"https://img.shields.io/docker/pulls/ultralytics/yolov5?logo=docker\" alt=\"Docker Pulls\"></a>\n"
]
},
{
"cell_type": "markdown",
"metadata": {
"id": "6Qu7Iesl0p54"
},
"source": [
"# Status\n",
"\n",
"![CI CPU testing](https://github.com/ultralytics/yolov5/workflows/CI%20CPU%20testing/badge.svg)\n",
"\n",
"If this badge is green, all [YOLOv5 GitHub Actions](https://github.com/ultralytics/yolov5/actions) Continuous Integration (CI) tests are currently passing. CI tests verify correct operation of YOLOv5 training ([train.py](https://github.com/ultralytics/yolov5/blob/master/train.py)), testing ([val.py](https://github.com/ultralytics/yolov5/blob/master/val.py)), inference ([detect.py](https://github.com/ultralytics/yolov5/blob/master/detect.py)) and export ([export.py](https://github.com/ultralytics/yolov5/blob/master/export.py)) on MacOS, Windows, and Ubuntu every 24 hours and on every commit.\n"
]
},
{
"cell_type": "markdown",
"metadata": {
"id": "IEijrePND_2I"
},
"source": [
"# Appendix\n",
"\n",
"Optional extras below. Unit tests validate repo functionality and should be run on any PRs submitted.\n"
]
},
{
"cell_type": "code",
"metadata": {
"id": "mcKoSIK2WSzj"
},
"source": [
"# Reproduce\n",
"for x in 'yolov5n', 'yolov5s', 'yolov5m', 'yolov5l', 'yolov5x':\n",
" !python val.py --weights {x}.pt --data coco.yaml --img 640 --task speed # speed\n",
" !python val.py --weights {x}.pt --data coco.yaml --img 640 --conf 0.001 --iou 0.65 # mAP"
],
"execution_count": null,
"outputs": []
},
{
"cell_type": "code",
"metadata": {
"id": "GMusP4OAxFu6"
},
"source": [
"# PyTorch Hub\n",
"import torch\n",
"\n",
"# Model\n",
"model = torch.hub.load('ultralytics/yolov5', 'yolov5s')\n",
"\n",
"# Images\n",
"dir = 'https://ultralytics.com/images/'\n",
"imgs = [dir + f for f in ('zidane.jpg', 'bus.jpg')] # batch of images\n",
"\n",
"# Inference\n",
"results = model(imgs)\n",
"results.print() # or .show(), .save()"
],
"execution_count": null,
"outputs": []
},
{
"cell_type": "code",
"metadata": {
"id": "FGH0ZjkGjejy"
},
"source": [
"# CI Checks\n",
"%%shell\n",
"export PYTHONPATH=\"$PWD\" # to run *.py. files in subdirectories\n",
"rm -rf runs # remove runs/\n",
"for m in yolov5n; do # models\n",
" python train.py --img 64 --batch 32 --weights $m.pt --epochs 1 --device 0 # train pretrained\n",
" python train.py --img 64 --batch 32 --weights '' --cfg $m.yaml --epochs 1 --device 0 # train scratch\n",
" for d in 0 cpu; do # devices\n",
" python val.py --weights $m.pt --device $d # val official\n",
" python val.py --weights runs/train/exp/weights/best.pt --device $d # val custom\n",
" python detect.py --weights $m.pt --device $d # detect official\n",
" python detect.py --weights runs/train/exp/weights/best.pt --device $d # detect custom\n",
" done\n",
" python hubconf.py # hub\n",
" python models/yolo.py --cfg $m.yaml # build PyTorch model\n",
" python models/tf.py --weights $m.pt # build TensorFlow model\n",
" python export.py --img 64 --batch 1 --weights $m.pt --include torchscript onnx # export\n",
"done"
],
"execution_count": null,
"outputs": []
},
{
"cell_type": "code",
"metadata": {
"id": "gogI-kwi3Tye"
},
"source": [
"# Profile\n",
"from utils.torch_utils import profile\n",
"\n",
"m1 = lambda x: x * torch.sigmoid(x)\n",
"m2 = torch.nn.SiLU()\n",
"results = profile(input=torch.randn(16, 3, 640, 640), ops=[m1, m2], n=100)"
],
"execution_count": null,
"outputs": []
},
{
"cell_type": "code",
"metadata": {
"id": "RVRSOhEvUdb5"
},
"source": [
"# Evolve\n",
"!python train.py --img 640 --batch 64 --epochs 100 --data coco128.yaml --weights yolov5s.pt --cache --noautoanchor --evolve\n",
"!d=runs/train/evolve && cp evolve.* $d && zip -r evolve.zip $d && gsutil mv evolve.zip gs://bucket # upload results (optional)"
],
"execution_count": null,
"outputs": []
},
{
"cell_type": "code",
"metadata": {
"id": "BSgFCAcMbk1R"
},
"source": [
"# VOC\n",
"for b, m in zip([64, 64, 32, 16], ['yolov5s', 'yolov5m', 'yolov5l', 'yolov5x']): # zip(batch_size, model)\n",
" !python train.py --batch {b} --weights {m}.pt --data VOC.yaml --epochs 50 --cache --img 512 --nosave --hyp hyp.VOC.yaml --project VOC --name {m}"
],
"execution_count": null,
"outputs": []
},
{
"cell_type": "code",
"metadata": {
"id": "VTRwsvA9u7ln"
},
"source": [
"# TensorRT \n",
"# https://docs.nvidia.com/deeplearning/tensorrt/install-guide/index.html#installing-pip\n",
"!pip install -U nvidia-tensorrt --index-url https://pypi.ngc.nvidia.com # install\n",
"!python export.py --weights yolov5s.pt --include engine --imgsz 640 640 --device 0 # export\n",
"!python detect.py --weights yolov5s.engine --imgsz 640 640 --device 0 # inference"
],
"execution_count": null,
"outputs": []
}
]
}
|