|
import json |
|
import shutil |
|
import sys |
|
from datetime import datetime |
|
from pathlib import Path |
|
|
|
import torch |
|
|
|
sys.path.append(str(Path(__file__).parent.parent.parent)) |
|
from utils.general import colorstr, xywh2xyxy |
|
|
|
try: |
|
import wandb |
|
except ImportError: |
|
wandb = None |
|
print(f"{colorstr('wandb: ')}Install Weights & Biases for YOLOv5 logging with 'pip install wandb' (recommended)") |
|
|
|
WANDB_ARTIFACT_PREFIX = 'wandb-artifact://' |
|
|
|
|
|
def remove_prefix(from_string, prefix): |
|
return from_string[len(prefix):] |
|
|
|
|
|
class WandbLogger(): |
|
def __init__(self, opt, name, run_id, data_dict, job_type='Training'): |
|
self.wandb = wandb |
|
self.wandb_run = wandb.init(config=opt, resume="allow", |
|
project='YOLOv5' if opt.project == 'runs/train' else Path(opt.project).stem, |
|
name=name, |
|
job_type=job_type, |
|
id=run_id) if self.wandb else None |
|
|
|
if job_type == 'Training': |
|
self.setup_training(opt, data_dict) |
|
if opt.bbox_interval == -1: |
|
opt.bbox_interval = (opt.epochs // 10) if opt.epochs > 10 else opt.epochs |
|
if opt.save_period == -1: |
|
opt.save_period = (opt.epochs // 10) if opt.epochs > 10 else opt.epochs |
|
|
|
def setup_training(self, opt, data_dict): |
|
self.log_dict = {} |
|
self.train_artifact_path, self.trainset_artifact = \ |
|
self.download_dataset_artifact(data_dict['train'], opt.artifact_alias) |
|
self.test_artifact_path, self.testset_artifact = \ |
|
self.download_dataset_artifact(data_dict['val'], opt.artifact_alias) |
|
self.result_artifact, self.result_table, self.weights = None, None, None |
|
if self.train_artifact_path is not None: |
|
train_path = Path(self.train_artifact_path) / 'data/images/' |
|
data_dict['train'] = str(train_path) |
|
if self.test_artifact_path is not None: |
|
test_path = Path(self.test_artifact_path) / 'data/images/' |
|
data_dict['val'] = str(test_path) |
|
self.result_artifact = wandb.Artifact("run_" + wandb.run.id + "_progress", "evaluation") |
|
self.result_table = wandb.Table(["epoch", "id", "prediction", "avg_confidence"]) |
|
if opt.resume_from_artifact: |
|
modeldir, _ = self.download_model_artifact(opt.resume_from_artifact) |
|
if modeldir: |
|
self.weights = Path(modeldir) / "best.pt" |
|
opt.weights = self.weights |
|
|
|
def download_dataset_artifact(self, path, alias): |
|
if path.startswith(WANDB_ARTIFACT_PREFIX): |
|
dataset_artifact = wandb.use_artifact(remove_prefix(path, WANDB_ARTIFACT_PREFIX) + ":" + alias) |
|
assert dataset_artifact is not None, "'Error: W&B dataset artifact doesn\'t exist'" |
|
datadir = dataset_artifact.download() |
|
labels_zip = Path(datadir) / "data/labels.zip" |
|
shutil.unpack_archive(labels_zip, Path(datadir) / 'data/labels', 'zip') |
|
print("Downloaded dataset to : ", datadir) |
|
return datadir, dataset_artifact |
|
return None, None |
|
|
|
def download_model_artifact(self, name): |
|
model_artifact = wandb.use_artifact(name + ":latest") |
|
assert model_artifact is not None, 'Error: W&B model artifact doesn\'t exist' |
|
modeldir = model_artifact.download() |
|
print("Downloaded model to : ", modeldir) |
|
return modeldir, model_artifact |
|
|
|
def log_model(self, path, opt, epoch): |
|
datetime_suffix = datetime.today().strftime('%Y-%m-%d-%H-%M-%S') |
|
model_artifact = wandb.Artifact('run_' + wandb.run.id + '_model', type='model', metadata={ |
|
'original_url': str(path), |
|
'epoch': epoch + 1, |
|
'save period': opt.save_period, |
|
'project': opt.project, |
|
'datetime': datetime_suffix |
|
}) |
|
model_artifact.add_file(str(path / 'last.pt'), name='last.pt') |
|
model_artifact.add_file(str(path / 'best.pt'), name='best.pt') |
|
wandb.log_artifact(model_artifact) |
|
print("Saving model artifact on epoch ", epoch + 1) |
|
|
|
def log_dataset_artifact(self, dataset, class_to_id, name='dataset'): |
|
artifact = wandb.Artifact(name=name, type="dataset") |
|
image_path = dataset.path |
|
artifact.add_dir(image_path, name='data/images') |
|
table = wandb.Table(columns=["id", "train_image", "Classes"]) |
|
class_set = wandb.Classes([{'id': id, 'name': name} for id, name in class_to_id.items()]) |
|
for si, (img, labels, paths, shapes) in enumerate(dataset): |
|
height, width = shapes[0] |
|
labels[:, 2:] = (xywh2xyxy(labels[:, 2:].view(-1, 4))) |
|
labels[:, 2:] *= torch.Tensor([width, height, width, height]) |
|
box_data = [] |
|
img_classes = {} |
|
for cls, *xyxy in labels[:, 1:].tolist(): |
|
cls = int(cls) |
|
box_data.append({"position": {"minX": xyxy[0], "minY": xyxy[1], "maxX": xyxy[2], "maxY": xyxy[3]}, |
|
"class_id": cls, |
|
"box_caption": "%s" % (class_to_id[cls]), |
|
"scores": {"acc": 1}, |
|
"domain": "pixel"}) |
|
img_classes[cls] = class_to_id[cls] |
|
boxes = {"ground_truth": {"box_data": box_data, "class_labels": class_to_id}} |
|
table.add_data(si, wandb.Image(paths, classes=class_set, boxes=boxes), json.dumps(img_classes)) |
|
artifact.add(table, name) |
|
labels_path = 'labels'.join(image_path.rsplit('images', 1)) |
|
zip_path = Path(labels_path).parent / (name + '_labels.zip') |
|
if not zip_path.is_file(): |
|
shutil.make_archive(zip_path.with_suffix(''), 'zip', labels_path) |
|
artifact.add_file(str(zip_path), name='data/labels.zip') |
|
wandb.log_artifact(artifact) |
|
print("Saving data to W&B...") |
|
|
|
def log(self, log_dict): |
|
if self.wandb_run: |
|
for key, value in log_dict.items(): |
|
self.log_dict[key] = value |
|
|
|
def end_epoch(self): |
|
if self.wandb_run and self.log_dict: |
|
wandb.log(self.log_dict) |
|
self.log_dict = {} |
|
|
|
def finish_run(self): |
|
if self.wandb_run: |
|
if self.result_artifact: |
|
print("Add Training Progress Artifact") |
|
self.result_artifact.add(self.result_table, 'result') |
|
train_results = wandb.JoinedTable(self.testset_artifact.get("val"), self.result_table, "id") |
|
self.result_artifact.add(train_results, 'joined_result') |
|
wandb.log_artifact(self.result_artifact) |
|
if self.log_dict: |
|
wandb.log(self.log_dict) |
|
wandb.run.finish() |
|
|