Spaces:
Running
on
Zero
Running
on
Zero
File size: 31,217 Bytes
71139a9 f3d3559 71139a9 e312782 71139a9 f3d3559 71139a9 f3d3559 71139a9 f3d3559 ed1b7ea f3d3559 71139a9 ed1b7ea 71139a9 f3d3559 71139a9 f3d3559 71139a9 f3d3559 71139a9 f3d3559 71139a9 f3d3559 71139a9 f3d3559 71139a9 f3d3559 71139a9 f3d3559 71139a9 f3d3559 71139a9 f3d3559 71139a9 f3d3559 ed1b7ea f3d3559 71139a9 00f618e f3d3559 00f618e 71139a9 ed1b7ea 71139a9 f3d3559 71139a9 f3d3559 71139a9 ed1b7ea 71139a9 f3d3559 71139a9 ed1b7ea 71139a9 f3d3559 71139a9 f3d3559 71139a9 f3d3559 71139a9 f3d3559 71139a9 ed1b7ea 71139a9 ed1b7ea 71139a9 f3d3559 71139a9 f3d3559 ed1b7ea 71139a9 f3d3559 71139a9 f3d3559 ed1b7ea 71139a9 f3d3559 71139a9 ed1b7ea f3d3559 f91c3fb 71139a9 f3d3559 f91c3fb f3d3559 71139a9 f91c3fb f3d3559 ed1b7ea f3d3559 ed1b7ea 71139a9 6a53904 71139a9 f3d3559 71139a9 f3d3559 71139a9 f3d3559 ed1b7ea f3d3559 ed1b7ea f3d3559 ed1b7ea f3d3559 71139a9 f3d3559 6a53904 71139a9 6a53904 71139a9 6a53904 f3d3559 71139a9 f3d3559 ed1b7ea f3d3559 ed1b7ea f3d3559 ed1b7ea f3d3559 71139a9 f3d3559 6a53904 f3d3559 71139a9 f3d3559 71139a9 f3d3559 71139a9 f3d3559 71139a9 ed1b7ea f3d3559 71139a9 f3d3559 71139a9 f3d3559 71139a9 f3d3559 ed1b7ea f3d3559 ed1b7ea f3d3559 ed1b7ea f3d3559 ed1b7ea f3d3559 71139a9 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 |
import gradio
import gradio_image_annotation
import gradio_imageslider
import spaces
import torch
import src.SegmentAnything2Assist.SegmentAnything2Assist as SegmentAnything2Assist
example_image_annotation = {
"image": "assets/cars.jpg",
"boxes": [
{
"label": "+",
"color": (0, 255, 0),
"xmin": 886,
"ymin": 551,
"xmax": 886,
"ymax": 551,
},
{
"label": "-",
"color": (255, 0, 0),
"xmin": 1239,
"ymin": 576,
"xmax": 1239,
"ymax": 576,
},
{
"label": "-",
"color": (255, 0, 0),
"xmin": 610,
"ymin": 574,
"xmax": 610,
"ymax": 574,
},
{
"label": "",
"color": (0, 0, 255),
"xmin": 254,
"ymin": 466,
"xmax": 1347,
"ymax": 1047,
},
],
}
VERBOSE = True
DEBUG = False
segment_anything2assist = SegmentAnything2Assist.SegmentAnything2Assist(
sam_model_name="sam2_hiera_tiny", device=torch.device("cuda")
)
def change_base_model(model_name, device):
global segment_anything2assist
gradio.Info(f"Changing model to {model_name} on {device}", duration=3)
try:
segment_anything2assist = SegmentAnything2Assist.SegmentAnything2Assist(
model_name=model_name, device=torch.device(device)
)
gradio.Info(f"Model has been changed to {model_name} on {device}", duration=5)
except:
gradio.Error(f"Model could not be changed", duration=5)
def __post_process_annotator_inputs(value):
if VERBOSE:
print("SegmentAnything2AssistApp::____post_process_annotator_inputs::Called.")
__current_mask, __current_segment = None, None
new_boxes = []
__image_point_coords = []
__image_point_labels = []
__image_box = []
b_has_box = False
for box in value["boxes"]:
if box["label"] == "":
if not b_has_box:
new_box = box.copy()
new_box["color"] = (0, 0, 255)
new_boxes.append(new_box)
b_has_box = True
__image_box = [box["xmin"], box["ymin"], box["xmax"], box["ymax"]]
elif box["label"] == "+" or box["label"] == "-":
new_box = box.copy()
new_box["color"] = (0, 255, 0) if box["label"] == "+" else (255, 0, 0)
new_box["xmin"] = int((box["xmin"] + box["xmax"]) / 2)
new_box["ymin"] = int((box["ymin"] + box["ymax"]) / 2)
new_box["xmax"] = new_box["xmin"]
new_box["ymax"] = new_box["ymin"]
new_boxes.append(new_box)
__image_point_coords.append([new_box["xmin"], new_box["ymin"]])
__image_point_labels.append(1 if box["label"] == "+" else 0)
if len(__image_box) == 0:
__image_box = None
if len(__image_point_coords) == 0:
__image_point_coords = None
if len(__image_point_labels) == 0:
__image_point_labels = None
if VERBOSE:
print("SegmentAnything2AssistApp::____post_process_annotator_inputs::Done.")
return __image_point_coords, __image_point_labels, __image_box
@spaces.GPU(duration=60)
def generate_image_mask(
value,
mask_threshold,
max_hole_area,
max_sprinkle_area,
image_output_mode,
):
global segment_anything2assist
# Force post processing of annotated image
image_point_coords, image_point_labels, image_box = __post_process_annotator_inputs(
value
)
if VERBOSE:
print("SegmentAnything2AssistApp::generate_image_mask::Called.")
mask_chw, mask_iou = segment_anything2assist.generate_masks_from_image(
value["image"],
image_point_coords,
image_point_labels,
image_box,
mask_threshold,
max_hole_area,
max_sprinkle_area,
)
if VERBOSE:
print("SegmentAnything2AssistApp::generate_image_mask::Masks generated.")
__current_mask, __current_segment = segment_anything2assist.apply_mask_to_image(
value["image"], mask_chw[0]
)
if VERBOSE:
print(
"SegmentAnything2AssistApp::generate_image_mask::Masks and Segments created."
)
__image_box = gradio.DataFrame(value=[[]])
__image_point_coords = gradio.DataFrame(value=[[]])
if DEBUG:
__image_box = gradio.DataFrame(
value=[image_box],
label="Box",
interactive=False,
headers=["XMin", "YMin", "XMax", "YMax"],
)
x = []
for i, _ in enumerate(image_point_coords):
x.append(
[
image_point_labels[i],
image_point_coords[i][0],
image_point_coords[i][1],
]
)
__image_point_coords = gradio.DataFrame(
value=x,
label="Point Coords",
interactive=False,
headers=["Label", "X", "Y"],
)
if image_output_mode == "Mask":
return (
[value["image"], __current_mask],
__image_point_coords,
__image_box,
__current_mask,
__current_segment,
)
elif image_output_mode == "Segment":
return (
[value["image"], __current_segment],
__image_point_coords,
__image_box,
__current_mask,
__current_segment,
)
else:
gradio.Warning("This is an issue, please report the problem!", duration=5)
return (
gradio_imageslider.ImageSlider(render=True),
__image_point_coords,
__image_box,
__current_mask,
__current_segment,
)
def on_image_output_mode_change(image_input, radio, __current_mask, __current_segment):
if VERBOSE:
print("SegmentAnything2AssistApp::generate_image_mask::Called.")
if __current_mask is None or __current_segment is None:
gradio.Warning("Configuration was changed, generate the mask again", duration=5)
return gradio_imageslider.ImageSlider(render=True)
if radio == "Mask":
return [image_input["image"], __current_mask]
elif radio == "Segment":
return [image_input["image"], __current_segment]
else:
gradio.Warning("This is an issue, please report the problem!", duration=5)
return gradio_imageslider.ImageSlider(render=True)
def __generate_auto_mask(image, auto_list, auto_mode, auto_bbox_mode, masks, bboxes):
global segment_anything2assist
# When value from gallery is called, it is a tuple
if type(masks[0]) == tuple:
masks = [mask[0] for mask in masks]
image_with_bbox, mask, segment = segment_anything2assist.apply_auto_mask_to_image(
image, [int(i) - 1 for i in auto_list], masks, bboxes
)
output_1 = image_with_bbox if auto_bbox_mode else image
output_2 = mask if auto_mode == "Mask" else segment
return [output_1, output_2]
@spaces.GPU(duration=60)
def generate_auto_mask(
image,
points_per_side,
points_per_batch,
pred_iou_thresh,
stability_score_thresh,
stability_score_offset,
mask_threshold,
box_nms_thresh,
crop_n_layers,
crop_nms_thresh,
crop_overlay_ratio,
crop_n_points_downscale_factor,
min_mask_region_area,
use_m2m,
multimask_output,
output_mode,
):
global segment_anything2assist
if VERBOSE:
print("SegmentAnything2AssistApp::generate_auto_mask::Called.")
masks, bboxes, predicted_iou, stability_score = (
segment_anything2assist.generate_automatic_masks(
image,
points_per_side,
points_per_batch,
pred_iou_thresh,
stability_score_thresh,
stability_score_offset,
mask_threshold,
box_nms_thresh,
crop_n_layers,
crop_nms_thresh,
crop_overlay_ratio,
crop_n_points_downscale_factor,
min_mask_region_area,
use_m2m,
multimask_output,
)
)
if len(masks) == 0:
gradio.Warning(
"No masks generated, please tweak the advanced parameters.", duration=5
)
return (
gradio_imageslider.ImageSlider(),
gradio.CheckboxGroup([], value=[], label="Mask List", interactive=False),
gradio.Checkbox(value=False, label="Show Bounding Box", interactive=False),
gradio.Gallery(
None, label="Output Gallery", interactive=False, type="numpy"
),
gradio.DataFrame(
value=[[]],
label="Box",
interactive=False,
headers=["XMin", "YMin", "XMax", "YMax"],
),
)
else:
choices = [str(i) for i in range(len(masks))]
returning_image = __generate_auto_mask(
image, ["0"], output_mode, False, masks, bboxes
)
return (
returning_image,
gradio.CheckboxGroup(
choices, value=["0"], label="Mask List", interactive=True
),
gradio.Checkbox(value=False, label="Show Bounding Box", interactive=True),
gradio.Gallery(
masks, label="Output Gallery", interactive=True, type="numpy"
),
gradio.DataFrame(
value=bboxes,
label="Box",
interactive=False,
headers=["XMin", "YMin", "XMax", "YMax"],
type="array",
),
)
def __generate_yolo_mask(
image,
yolo_mask,
output_mode,
):
global segment_anything2assist
if VERBOSE:
print("SegmentAnything2AssistApp::generate_yolo_mask::Called.")
mask = yolo_mask[4]
if output_mode == "Mask":
return [image, mask]
mask, output_image = segment_anything2assist.apply_mask_to_image(image, mask)
if output_mode == "Segment":
return [image, output_image]
@spaces.GPU(duration=60)
def generate_yolo_mask(
image,
yolo_model_choice,
mask_threshold,
max_hole_area,
max_sprinkle_area,
output_mode,
):
global segment_anything2assist
if VERBOSE:
print("SegmentAnything2AssistApp::generate_yolo_mask::Called.")
results = segment_anything2assist.generate_mask_from_image_with_yolo(
image,
YOLOv10ModelName=yolo_model_choice,
mask_threshold=mask_threshold,
max_hole_area=max_hole_area,
max_sprinkle_area=max_sprinkle_area,
)
if len(results) > 0:
if VERBOSE:
print("SegmentAnything2AssistApp::generate_yolo_mask::Masks generated.")
yolo_masks = []
for result in results:
yolo_mask = [
result["name"],
result["class"],
result["confidence"],
[result["box"]],
result["mask_chw"],
result["mask_iou"][0].item(),
]
yolo_masks.append(yolo_mask)
return __generate_yolo_mask(image, yolo_masks[0], output_mode), gradio.Dataset(
label="YOLOv10 Assisted Masks", type="values", samples=yolo_masks
)
else:
if VERBOSE:
print("SegmentAnything2AssistApp::generate_yolo_mask::No masks generated.")
return gradio.ImageSlider(), gradio.Dataset()
with gradio.Blocks() as base_app:
gradio.Markdown(
"""
<h1 style="text-align: center;">Segment Anything 2 Assist π</h1>
<p style="text-align: center;">A tool for advanced image segmentation and annotation. πΌοΈβοΈ</p>
"""
)
with gradio.Row():
with gradio.Column():
base_model_choice = gradio.Dropdown(
[
"sam2_hiera_large",
"sam2_hiera_small",
"sam2_hiera_base_plus",
"sam2_hiera_tiny",
],
value="sam2_hiera_tiny",
label="Model Choice",
)
with gradio.Column():
base_gpu_choice = gradio.Dropdown(
["cpu", "cuda"], value="cuda", label="Device Choice"
)
base_model_choice.change(
change_base_model, inputs=[base_model_choice, base_gpu_choice]
)
base_gpu_choice.change(
change_base_model, inputs=[base_model_choice, base_gpu_choice]
)
# Image Segmentation
with gradio.Tab(label="π Image Segmentation", id="image_tab") as image_tab:
gradio.Markdown("Image Segmentation", render=True)
with gradio.Column():
with gradio.Accordion("Image Annotation Documentation", open=False):
gradio.Markdown(
"""
### πΌοΈ Image Annotation Documentation
Image annotation allows you to mark specific regions of an image with labels.
In this app, you can annotate an image by drawing bounding boxes and/or making points on the image.
The labels can be either '+' or '-'.
**π How to Annotate an Image:**
- Bounding Box: Click and drag to draw a box around the desired region.
- Positive or Negative Points: Draw a small box (note that the center point will be used for the annotation) and add either "+" or "-" as the label respectively.
**π¨ Generating Masks:**
- Once you have annotated the image, click the 'Generate Mask' button to generate a mask based on the annotations.
- The mask can be either a binary mask or a segmented mask, depending on the selected output mode.
- You can switch between the output modes using the radio buttons.
- If you make any changes to the annotations or the output mode, you need to regenerate the mask by clicking the button again.
**βοΈ Advanced Options:**
- The advanced options allow you to adjust the SAM mask threshold, maximum hole area, and maximum sprinkle area.
- These options control the sensitivity and accuracy of the segmentation process.
- Experiment with different settings to achieve the desired results.
"""
)
image_input = gradio_image_annotation.image_annotator(
example_image_annotation
)
with gradio.Accordion("Advanced Options", open=False):
image_generate_SAM_mask_threshold = gradio.Slider(
0.0, 1.0, 0.0, label="SAM Mask Threshold"
)
image_generate_SAM_max_hole_area = gradio.Slider(
0, 1000, 0, label="SAM Max Hole Area"
)
image_generate_SAM_max_sprinkle_area = gradio.Slider(
0, 1000, 0, label="SAM Max Sprinkle Area"
)
image_generate_mask_button = gradio.Button("Generate Mask")
with gradio.Row():
with gradio.Column():
image_output_mode = gradio.Radio(
["Segment", "Mask"], value="Segment", label="Output Mode"
)
with gradio.Column(scale=3):
image_output = gradio_imageslider.ImageSlider()
with gradio.Accordion("Debug", open=DEBUG, visible=DEBUG):
__image_point_coords = gradio.DataFrame(
value=[["+", 886, 551], ["-", 1239, 576]],
label="Point Coords",
interactive=False,
headers=["Label", "X", "Y"],
)
__image_box = gradio.DataFrame(
value=[[254, 466, 1347, 1047]],
label="Box",
interactive=False,
headers=["XMin", "YMin", "XMax", "YMax"],
)
__current_mask = gradio.Image(label="Current Mask", interactive=False)
__current_segment = gradio.Image(
label="Current Segment", interactive=False
)
# image_input.change(__post_process_annotator_inputs, inputs = [image_input])
image_generate_mask_button.click(
generate_image_mask,
inputs=[
image_input,
image_generate_SAM_mask_threshold,
image_generate_SAM_max_hole_area,
image_generate_SAM_max_sprinkle_area,
image_output_mode,
],
outputs=[
image_output,
__image_point_coords,
__image_box,
__current_mask,
__current_segment,
],
)
image_output_mode.change(
on_image_output_mode_change,
inputs=[
image_input,
image_output_mode,
__current_mask,
__current_segment,
],
outputs=[image_output],
)
# Auto Segmentation
with gradio.Tab(label="π€ Auto Segmentation", id="auto_tab"):
gradio.Markdown("Auto Segmentation", render=True)
with gradio.Column():
with gradio.Accordion("Auto Annotation Documentation", open=False):
gradio.Markdown(
"""
### πΌοΈ Auto Annotation Documentation
Auto annotation allows you to automatically generate masks for an image based on advanced parameters.
In this app, you can configure various settings to control the mask generation process.
**π How to Use Auto Annotation:**
- Upload or select an image.
- Adjust the advanced options to fine-tune the mask generation process.
- Click the 'Generate Auto Mask' button to generate masks automatically.
**βοΈ Advanced Options:**
- **Points Per Side:** Number of points to sample per side of the image.
- **Points Per Batch:** Number of points to process in each batch.
- **Pred IOU Threshold:** Threshold for the predicted Intersection over Union (IOU) score.
- **Stability Score Threshold:** Threshold for the stability score.
- **Stability Score Offset:** Offset for the stability score.
- **Mask Threshold:** Threshold for the mask generation.
- **Box NMS Threshold:** Non-Maximum Suppression (NMS) threshold for boxes.
- **Crop N Layers:** Number of layers to crop.
- **Crop NMS Threshold:** NMS threshold for crops.
- **Crop Overlay Ratio:** Overlay ratio for crops.
- **Crop N Points Downscale Factor:** Downscale factor for the number of points in crops.
- **Min Mask Region Area:** Minimum area for mask regions.
- **Use M2M:** Whether to use M2M (Mask-to-Mask) refinement.
- **Multi Mask Output:** Whether to generate multiple masks.
**π¨ Generating Masks:**
- Once you have configured the advanced options, click the 'Generate Auto Mask' button.
- The masks will be generated automatically based on the selected parameters.
- You can view the generated masks and adjust the settings if needed.
"""
)
auto_input = gradio.Image("assets/cars.jpg")
with gradio.Accordion("Advanced Options", open=False):
auto_generate_SAM_points_per_side = gradio.Slider(
1, 64, 12, 1, label="Points Per Side", interactive=True
)
auto_generate_SAM_points_per_batch = gradio.Slider(
1, 64, 32, 1, label="Points Per Batch", interactive=True
)
auto_generate_SAM_pred_iou_thresh = gradio.Slider(
0.0, 1.0, 0.8, 1, label="Pred IOU Threshold", interactive=True
)
auto_generate_SAM_stability_score_thresh = gradio.Slider(
0.0, 1.0, 0.95, label="Stability Score Threshold", interactive=True
)
auto_generate_SAM_stability_score_offset = gradio.Slider(
0.0, 1.0, 1.0, label="Stability Score Offset", interactive=True
)
auto_generate_SAM_mask_threshold = gradio.Slider(
0.0, 1.0, 0.0, label="Mask Threshold", interactive=True
)
auto_generate_SAM_box_nms_thresh = gradio.Slider(
0.0, 1.0, 0.7, label="Box NMS Threshold", interactive=True
)
auto_generate_SAM_crop_n_layers = gradio.Slider(
0, 10, 0, 1, label="Crop N Layers", interactive=True
)
auto_generate_SAM_crop_nms_thresh = gradio.Slider(
0.0, 1.0, 0.7, label="Crop NMS Threshold", interactive=True
)
auto_generate_SAM_crop_overlay_ratio = gradio.Slider(
0.0, 1.0, 512 / 1500, label="Crop Overlay Ratio", interactive=True
)
auto_generate_SAM_crop_n_points_downscale_factor = gradio.Slider(
1, 10, 1, label="Crop N Points Downscale Factor", interactive=True
)
auto_generate_SAM_min_mask_region_area = gradio.Slider(
0, 1000, 0, label="Min Mask Region Area", interactive=True
)
auto_generate_SAM_use_m2m = gradio.Checkbox(
label="Use M2M", interactive=True
)
auto_generate_SAM_multimask_output = gradio.Checkbox(
value=True, label="Multi Mask Output", interactive=True
)
auto_generate_button = gradio.Button("Generate Auto Mask")
with gradio.Row():
with gradio.Column():
auto_output_mode = gradio.Radio(
["Segment", "Mask"],
value="Segment",
label="Output Mode",
interactive=True,
)
auto_output_list = gradio.CheckboxGroup(
[], value=[], label="Mask List", interactive=False
)
auto_output_bbox = gradio.Checkbox(
value=False, label="Show Bounding Box", interactive=False
)
with gradio.Column(scale=3):
auto_output = gradio_imageslider.ImageSlider()
with gradio.Accordion("Debug", open=DEBUG, visible=DEBUG):
__auto_output_gallery = gradio.Gallery(
None, label="Output Gallery", interactive=False, type="numpy"
)
__auto_bbox = gradio.DataFrame(
value=[[]],
label="Box",
interactive=False,
headers=["XMin", "YMin", "XMax", "YMax"],
)
auto_generate_button.click(
generate_auto_mask,
inputs=[
auto_input,
auto_generate_SAM_points_per_side,
auto_generate_SAM_points_per_batch,
auto_generate_SAM_pred_iou_thresh,
auto_generate_SAM_stability_score_thresh,
auto_generate_SAM_stability_score_offset,
auto_generate_SAM_mask_threshold,
auto_generate_SAM_box_nms_thresh,
auto_generate_SAM_crop_n_layers,
auto_generate_SAM_crop_nms_thresh,
auto_generate_SAM_crop_overlay_ratio,
auto_generate_SAM_crop_n_points_downscale_factor,
auto_generate_SAM_min_mask_region_area,
auto_generate_SAM_use_m2m,
auto_generate_SAM_multimask_output,
auto_output_mode,
],
outputs=[
auto_output,
auto_output_list,
auto_output_bbox,
__auto_output_gallery,
__auto_bbox,
],
)
auto_output_list.change(
__generate_auto_mask,
inputs=[
auto_input,
auto_output_list,
auto_output_mode,
auto_output_bbox,
__auto_output_gallery,
__auto_bbox,
],
outputs=[auto_output],
)
auto_output_bbox.change(
__generate_auto_mask,
inputs=[
auto_input,
auto_output_list,
auto_output_mode,
auto_output_bbox,
__auto_output_gallery,
__auto_bbox,
],
outputs=[auto_output],
)
auto_output_mode.change(
__generate_auto_mask,
inputs=[
auto_input,
auto_output_list,
auto_output_mode,
auto_output_bbox,
__auto_output_gallery,
__auto_bbox,
],
outputs=[auto_output],
)
# YOLOv10 assisted Segmentation.
with gradio.Tab("π€ YOLOv10 assisted Segmentation"):
gradio.Markdown("YOLOv10 assisted Segmentation")
with gradio.Column():
with gradio.Accordion("YOLOv10 Documentation", open=False):
gradio.Markdown(
"""
### πΌοΈ YOLOv10 Assisted Segmentation Documentation
YOLOv10 assisted segmentation allows you to generate masks for an image using the YOLOv10 model.
In this app, you can configure various settings to control the mask generation process.
**π How to Use YOLOv10 Assisted Segmentation:**
- Upload or select an image.
- Choose the desired YOLOv10 model from the dropdown.
- Adjust the advanced settings to fine-tune the mask generation process.
- Click the 'Generate YOLOv10 Mask' button to generate masks.
**βοΈ Advanced Settings:**
- **SAM Mask Threshold:** Threshold for the SAM mask generation.
- **Max Hole Area:** Maximum area for holes in the mask.
- **Max Sprinkle Area:** Maximum area for sprinkled regions in the mask.
**π¨ Generating Masks:**
- Once you have configured the settings, click the 'Generate YOLOv10 Mask' button.
- The masks will be generated based on the selected parameters.
- You can view the generated masks and adjust the settings if needed.
"""
)
yolo_input = gradio.Image("assets/cars.jpg")
yolo_model_choice = gradio.Dropdown(
choices=["nano", "small", "medium", "base", "large", "xlarge"],
value="nano",
label="YOLOv10 Model Choice",
)
with gradio.Accordion("Advanced Settings", open=False):
yolo_generate_SAM_mask_threshold = gradio.Slider(
0.0, 1.0, 0.0, label="SAM Mask Threshold"
)
yolo_generate_SAM_max_hole_area = gradio.Slider(
0, 1000, 0, label="SAM Max Hole Area"
)
yolo_generate_SAM_max_sprinkle_area = gradio.Slider(
0, 1000, 0, label="SAM Max Sprinkle Area"
)
yolo_generate_mask_button = gradio.Button("Generate YOLOv10 Mask")
with gradio.Row():
with gradio.Column():
yolo_output_mode = gradio.Radio(
["Segment", "Mask"], value="Segment", label="Output Mode"
)
with gradio.Column(scale=3):
yolo_output = gradio_imageslider.ImageSlider()
with gradio.Accordion("Debug 1", open=DEBUG, visible=DEBUG):
__yolo_name = gradio.Textbox(
label="Name", interactive=DEBUG, visible=DEBUG
)
__yolo_class = gradio.Number(
label="Class", interactive=DEBUG, visible=DEBUG
)
__yolo_confidence = gradio.Number(
label="Confidence", interactive=DEBUG, visible=DEBUG
)
__yolo_box = gradio.DataFrame(
value=[[1, 2, 3, 4]], label="Box", interactive=DEBUG, visible=DEBUG
)
__yolo_mask = gradio.Image(
label="Mask", interactive=DEBUG, visible=DEBUG
)
__yolo_mask_iou = gradio.Number(
label="Mask IOU", interactive=DEBUG, visible=DEBUG
)
with gradio.Row():
yolo_masks = gradio.Dataset(
label="YOLOv10 Assisted Masks",
type="values",
components=[
__yolo_name,
__yolo_class,
__yolo_confidence,
__yolo_box,
__yolo_mask,
__yolo_mask_iou,
],
)
yolo_generate_mask_button.click(
generate_yolo_mask,
inputs=[
yolo_input,
yolo_model_choice,
yolo_generate_SAM_mask_threshold,
yolo_generate_SAM_max_hole_area,
yolo_generate_SAM_max_sprinkle_area,
yolo_output_mode,
],
outputs=[yolo_output, yolo_masks],
)
yolo_masks.click(
__generate_yolo_mask,
inputs=[yolo_input, yolo_masks, yolo_output_mode],
outputs=[yolo_output],
)
yolo_output_mode.change(
__generate_yolo_mask,
inputs=[yolo_input, yolo_masks, yolo_output_mode],
outputs=[yolo_output],
)
if __name__ == "__main__":
base_app.launch()
|