Spaces:
Sleeping
Sleeping
import streamlit as st | |
from PIL import Image | |
from transformers import pipeline | |
# Create an image classification pipeline with scores | |
pipe = pipeline("image-classification", model="trpakov/vit-face-expression", top_k=None) | |
# Define emotion labels | |
emotion_labels = ["Neutral", "Sad", "Angry", "Surprised", "Happy"] | |
# Streamlit app | |
st.title("Emotion Recognition with vit-face-expression") | |
# Slider example | |
x = st.slider('Select a value') | |
st.write(f"{x} squared is {x * x}") | |
# Upload images | |
uploaded_images = st.file_uploader("Upload images", type=["jpg", "png"], accept_multiple_files=True) | |
if st.button("Predict Emotions") and uploaded_images: | |
if len(uploaded_images) == 2: | |
# Open the uploaded images | |
images = [Image.open(img) for img in uploaded_images] | |
# Predict emotion for each image using the pipeline | |
results = [pipe(image) for image in images] | |
# Display images and predicted emotions side by side | |
col1, col2 = st.columns(2) | |
for i in range(2): | |
predicted_class = results[i][0]["label"] | |
predicted_emotion = predicted_class.split("_")[-1].capitalize() | |
col = col1 if i == 0 else col2 | |
col.image(images[i], caption=f"Predicted emotion: {predicted_emotion}", use_column_width=True) | |
col.write(f"Emotion Scores for {predicted_emotion}: {results[i][0]['score']:.4f}") | |
# Display scores for other categories | |
st.write(f"Emotion Scores for other categories (Image {i+1}):") | |
for label, score in zip(emotion_labels, results[i][0]["score"]): | |
if label.lower() != predicted_emotion.lower(): # Exclude the predicted emotion | |
st.write(f"{label}: {score:.4f}") | |
else: | |
# Open the uploaded images | |
images = [Image.open(img) for img in uploaded_images] | |
# Predict emotion for each image using the pipeline | |
results = [pipe(image) for image in images] | |
# Display images and predicted emotions | |
for i, result in enumerate(results): | |
predicted_class = result[0]["label"] | |
predicted_emotion = predicted_class.split("_")[-1].capitalize() | |
st.image(images[i], caption=f"Predicted emotion: {predicted_emotion}", use_column_width=True) | |
st.write(f"Emotion Scores for Image {i+1}:") | |
st.write(f"{predicted_emotion}: {result[0]['score']:.4f}") | |