File size: 12,623 Bytes
0bab51a
 
d0b2450
0bab51a
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
d0b2450
 
0bab51a
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
import os
import sys
import gradio as gr
import math
import matplotlib.pyplot as plt

import requests
import fileinput
import firebase_admin
from firebase_admin import credentials
from firebase_admin import firestore
import gradio as gr
import json
import math
import requests


basedir = "/content/drive/MyDrive/FYP/Code/VideoCrafter"
# if you change the variables here, remember to change the "name" in .sh file
vidOut = "results/10videos"
uvqOut = "results/modified_prompts_eval"
evalOut = "evaluation_results"
num_of_vid = 3
vid_length = 2
uvq_threshold = 3.8
fps = 24


# Generate the scores in csv files
def genScore():
    for i in range(1, num_of_vid+1):
        fileindex = f"{i:04d}"
        os.system(
            f'python3 ./uvq/uvq_main.py --input_files="{fileindex},2,{basedir}/{vidOut}/{fileindex}.mp4" --output_dir {uvqOut} --model_dir ./uvq/models'
        )


def getScore(filename):
    # MOS_score defines the output of the uvq score
    lines = str(filename).split('\n')
    last_line = lines[-1]
    MOS_score = last_line.split(',')[-1]
    MOS_score = MOS_score[:-2]

    return MOS_score

# MOS_score defines the Mean Opinion Score of prediction, if the video's MOS exceeds the threshold then we directly use this video


def chooseBestVideo():
    MOS_score_high = 0
    preferred_output = ""
    chosen_idx = 0

    for i in range(1, num_of_vid+1):
        '''We loop thru this current processed video'''
        filedir = f"{i:04d}"
        filename = f"{i:04d}_uvq.csv"
        with open(os.path.join(basedir, uvqOut, filedir, filename), 'r') as file:
            MOS = file.read().strip()

        MOS_score = getScore(MOS)
        print("Video Index:", f"{i:04d}", "Score:", MOS_score)

        # if the MOS_score is higher than the previous video, we choose this video as our preferred video output
        if float(MOS_score) > float(MOS_score_high) or float(MOS_score) > uvq_threshold:
            MOS_score_high = MOS_score
            preferred_output = filename
            chosen_idx = i

        if float(MOS_score) > uvq_threshold:
            break
    return chosen_idx
    # print(MOS_score_high)
    # print(preferred_output)


def extract_scores_from_json(json_path):
    with open(json_path) as file:
        data = json.load(file)

    for key, value in data.items():
        if isinstance(value, list) and len(value) > 1 and isinstance(value[0], float):
            motion_score = value[0]

    return motion_score


def VBench_eval(vid_filename):
    # vid_filename: video filename without .mp4
    os.system(
        f'python VBench/evaluate.py --dimension "motion_smoothness"  --videos_path {os.path.join(basedir, vidOut, vid_filename)}.mp4 --custom_input --output_filename {vid_filename}'
    )
    eval_file_path = os.path.join(
        basedir, evalOut, f"{vid_filename}_eval_results.json")
    motion_score = extract_scores_from_json(eval_file_path)

    return motion_score


def interpolation(chosen_idx, fps):
    vid_filename = f"{chosen_idx:04d}.mp4"
    os.chdir("/content/drive/MyDrive/FYP/Code/VideoCrafter/ECCV2022-RIFE")
    os.system(
        f'python3 inference_video.py --exp=2 --video={os.path.join(basedir, vidOut, vid_filename)} --fps {fps}'
    )
    os.chdir("/content/drive/MyDrive/FYP/Code/VideoCrafter")
    out_name = f"{chosen_idx:04d}_4X_{fps}fps.mp4"
    return out_name

# call the GPT API here


def call_gpt_api(prompt, isSentence=False):
    api_key = "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"

    response = requests.post(
        'https://api.openai.com/v1/chat/completions',
        headers={
            'Content-Type': 'application/json',
            'Authorization': f'Bearer {api_key}'
        },
        json={
            'messages': [{'role': 'system', 'content': 'You are a helpful assistant.'}, {'role': 'user', 'content': prompt}],
            'model': 'gpt-3.5-turbo',
            # 'prompt': prompt,
            'temperature': 0.4,
            'max_tokens': 200
        })
    response_json = response.json()
    choices = response_json['choices']
    contents = [choice['message']['content'] for choice in choices]
    contents = [
        sentence for sublist in contents for sentence in sublist.split('\n')]
    # Remove the leading number and dot from each sentence
    sentences = [content.lstrip('1234567890.- ') for content in contents]
    if len(sentences) > 2 and isSentence:
        sentences = sentences[1:]
    return sentences


# Initialize Firebase Admin SDK
cred = credentials.Certificate(
    f"{basedir}/final-year-project-443dd-df6f48af0796.json")
firebase_admin.initialize_app(cred)
# Initialize Firestore client
db = firestore.client()


def retrieve_user_feedback():
    # Retrieve user feedback from Firestore
    feedback_collection = db.collection("user_feedbacks")
    feedback_docs = feedback_collection.get()

    feedback_text = []
    experience = []
    for doc in feedback_docs:
        data = doc.to_dict()
        feedback_text.append(data.get('feedback_text', None))
        experience.append(data.get('experience', None))

    return feedback_text, experience


feedback_text, experience = retrieve_user_feedback()
# print("Feedback Text:", feedback_text)
# print("Experience:", experience)


def store_user_feedback(feedback_text, experience):
    # Get a reference to the Firestore collection
    feedback_collection = db.collection("user_feedbacks")

    # Create a new document with feedback_text and experience fields
    feedback_collection.add({
        'feedback_text': feedback_text,
        'experience': experience
    })
    return


t2v_examples = [
    ['A tiger walks in the forest, photorealistic, 4k, high definition'],
    ['an elephant is walking under the sea, 4K, high definition'],
    ['an astronaut riding a horse in outer space'],
    ['a monkey is playing a piano'],
    ['A fire is burning on a candle'],
    ['a horse is drinking in the river'],
    ['Robot dancing in times square'],
]


def generate_output(input_text, output_video_1, fps, examples):
    def generate_output_fn(input_text, output_video_1, fps, examples):
        if input_text == "":
            return input_text, output_video_1, examples
        output = call_gpt_api(
            prompt=f"Generate 2 similar prompts and add some reasonable words to the given prompt and not change the meaning, each within 30 words: {input_text}", isSentence=True)
        output.append(input_text)
        with open(f"{basedir}/prompts/test_prompts.txt", 'w') as file:
            for i, sentence in enumerate(output):
                if i < len(output) - 1:
                    file.write(sentence + '\n')
                else:
                    file.write(sentence)
        os.system(
            f'sh {os.path.join(basedir, "scripts", "run_text2video.sh")}')
        # Connect the video output and return the video corresponding link
        genScore()
        chosen_idx = chooseBestVideo()
        chosen_vid_path = interpolation(chosen_idx, fps)
        chosen_vid_path = f"{basedir}/{vidOut}/{chosen_vid_path}"
        # chosen_vid_path = "/content/drive/MyDrive/FYP/Code/VideoCrafter/results/cat/0002_4X_16fps.mp4"
        output_video_1 = gr.Video(
            value=chosen_vid_path, show_download_button=True)

        examples_list = call_gpt_api(
            prompt=f"Generate 5 similar prompts that makes a storyline coming after the given input, each within 10 words: {input_text}")
        examples = []
        for prompt in examples_list:
            examples.append([prompt])
        input_text = ""

        return input_text, output_video_1, examples

    return generate_output_fn(input_text, output_video_1, fps, examples)


def t2v_demo(result_dir='./tmp/'):
    with gr.Blocks() as videocrafter_iface:
        gr.Markdown("<div align='center'> <h2> VideoCraftXtend: AI-Enhanced Text-to-Video Generation with Extended Length and Enhanced Motion Smoothness </span> </h2> </div>")

        # Initialize values for video length and fps
        video_len_value = 5.0

        def update_fps(video_len, fps):
            fps_value = 80 / video_len
            return f"<div justify-content: 'center'; text-align='center'> <h6> FPS (frames per second) : {int(fps_value)} </span> </h6> </div>"

        def load_example(example_id):
            return example_id[0]

        def update_feedback(value, text):
            labels = ['Positive', 'Neutral', 'Negative']
            colors = ['#66c2a5', '#fc8d62', '#8da0cb']
            if value != '':
                store_user_feedback(value, text)
                user_satisfaction.append(value)
                value = ''
            if text != '':
                user_feedback.append(text)
                text = ''
            user_feedback, user_satisfaction = retrieve_user_feedback()
            sizes = [user_satisfaction.count('Positive'), user_satisfaction.count(
                'Neutral'), user_satisfaction.count('Negative')]
            plt.pie(sizes, labels=labels, autopct='%1.1f%%',
                    startangle=140, colors=colors)
            plt.axis('equal')
            return plt

        with gr.Tab(label="Text2Video"):
            with gr.Column():
                with gr.Row():
                    with gr.Column():
                        input_text = gr.Text(
                            placeholder=t2v_examples[2], label='Please input your prompt here.')
                        with gr.Row():
                            examples = gr.Dataset(samples=t2v_examples, components=[
                                                  input_text], label='Sample prompts that can be used to form a storyline.')
                        with gr.Column():
                            gr.Markdown(
                                "<div align='center'> <h4> Modify video length and the corresponding fps will be shown on the right. </span> </h4> </div>")
                            with gr.Row():
                                video_len = gr.Slider(minimum=4.0, maximum=10.0, step=1, label='Video Length',
                                                      value=video_len_value, elem_id="video_len", interactive=True)
                                fps = gr.Markdown(
                                    elem_id="fps", value=f"<div> <h6> FPS (frames per second) : 16</span> </h6> </div>")
                        send_btn = gr.Button("Send")
                    with gr.Column():
                        with gr.Tab(label='Result'):
                            with gr.Row():
                                output_video_1 = gr.Video(
                                    value="/content/drive/MyDrive/FYP/Code/VideoCrafter/results/10videos/0009.mp4", show_download_button=True)

            video_len.change(update_fps, inputs=[video_len, fps], outputs=fps)
            # fps.change(update_video_len_slider, inputs = fps, outputs = video_len)

            examples.click(load_example, inputs=[
                           examples], outputs=[input_text])
            send_btn.click(
                fn=generate_output,
                inputs=[input_text, output_video_1, fps, examples],
                outputs=[input_text, output_video_1, examples],
            )

        with gr.Tab(label="Feedback"):
            with gr.Column():
                with gr.Column():
                    with gr.Row():
                        feedback_value = gr.Radio(
                            ['Positive', 'Neutral', 'Negative'], label="How is your experience?")
                        feedback_text = gr.Textbox(
                            placeholder="Enter feedback here", label="Feedback Text")
                    with gr.Row():
                        cancel_btn = gr.Button("Clear")
                        submit_btn = gr.Button("Submit")
                with gr.Row():
                    pie_chart = gr.Plot(value=update_feedback(
                        '', ''), label="Feedback Pie Chart")
                    with gr.Column():
                        gr.Markdown(
                            "<div align='center'> <h4> Feedbacks from users: </span> </h4> </div>")
                        feedback_text_display = [gr.Markdown(
                            feedback, label="User Feedback") for feedback in retrieve_user_feedback()[0]]
                submit_btn.click(fn=update_feedback, inputs=[
                                 feedback_value, feedback_text], outputs=[pie_chart])

    return videocrafter_iface


if __name__ == "__main__":
    result_dir = os.path.join('./', 'results')
    t2v_iface = t2v_demo(result_dir)
    t2v_iface.queue(max_size=10)
    t2v_iface.launch(debug=True)