Spaces:
Running
on
T4
Running
on
T4
#!/usr/bin/env python | |
# coding=utf-8 | |
# Copyright 2023 The HuggingFace Inc. team. All rights reserved. | |
# | |
# Licensed under the Apache License, Version 2.0 (the "License"); | |
# you may not use this file except in compliance with the License. | |
# You may obtain a copy of the License at | |
# | |
# http://www.apache.org/licenses/LICENSE-2.0 | |
# | |
# Unless required by applicable law or agreed to in writing, software | |
# distributed under the License is distributed on an "AS IS" BASIS, | |
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. | |
# See the License for the specific language governing permissions and | |
# limitations under the License. | |
import torch | |
from ..models.speecht5 import SpeechT5ForTextToSpeech, SpeechT5HifiGan, SpeechT5Processor | |
from ..utils import is_datasets_available | |
from .base import PipelineTool | |
if is_datasets_available(): | |
from datasets import load_dataset | |
class TextToSpeechTool(PipelineTool): | |
default_checkpoint = "microsoft/speecht5_tts" | |
description = ( | |
"This is a tool that reads an English text out loud. It takes an input named `text` which should contain the " | |
"text to read (in English) and returns a waveform object containing the sound." | |
) | |
name = "text_reader" | |
pre_processor_class = SpeechT5Processor | |
model_class = SpeechT5ForTextToSpeech | |
post_processor_class = SpeechT5HifiGan | |
inputs = ["text"] | |
outputs = ["audio"] | |
def setup(self): | |
if self.post_processor is None: | |
self.post_processor = "microsoft/speecht5_hifigan" | |
super().setup() | |
def encode(self, text, speaker_embeddings=None): | |
inputs = self.pre_processor(text=text, return_tensors="pt", truncation=True) | |
if speaker_embeddings is None: | |
if not is_datasets_available(): | |
raise ImportError("Datasets needs to be installed if not passing speaker embeddings.") | |
embeddings_dataset = load_dataset("Matthijs/cmu-arctic-xvectors", split="validation") | |
speaker_embeddings = torch.tensor(embeddings_dataset[7305]["xvector"]).unsqueeze(0) | |
return {"input_ids": inputs["input_ids"], "speaker_embeddings": speaker_embeddings} | |
def forward(self, inputs): | |
with torch.no_grad(): | |
return self.model.generate_speech(**inputs) | |
def decode(self, outputs): | |
with torch.no_grad(): | |
return self.post_processor(outputs).cpu().detach() | |