Spaces:
Running
on
Zero
Running
on
Zero
File size: 14,407 Bytes
7f2690b bcb2531 7f2690b 9a11236 08f06b2 7f2690b 60a35ef 7f2690b 3cb7b20 7f2690b 84a4c93 7f2690b 3cb7b20 7f2690b 3cb7b20 7f2690b e8a0fdf 7c9dc5d 7f2690b bcb2531 7f2690b e562afd 7f2690b 7c9dc5d 93eb0ff cb48cb3 7f2690b 60a35ef 7f2690b e562afd 7f2690b 93eb0ff 7f2690b e562afd 93eb0ff 7f2690b 9982ba2 7f2690b be5b973 0741039 be5b973 5aa89e5 70abd06 5aa89e5 5c78aa5 5aa89e5 7f2690b be5b973 e562afd be5b973 e562afd 0741039 be5b973 e562afd be5b973 7f2690b be5b973 2237c94 e562afd 2237c94 e562afd e08f24e e562afd 2237c94 7050772 f279022 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 |
import torch
import torchvision
import os
import os.path as osp
import spaces
import random
from argparse import ArgumentParser
from datetime import datetime
import gradio as gr
from foleycrafter.utils.util import build_foleycrafter, read_frames_with_moviepy
from foleycrafter.pipelines.auffusion_pipeline import denormalize_spectrogram
from foleycrafter.pipelines.auffusion_pipeline import Generator
from foleycrafter.models.time_detector.model import VideoOnsetNet
from foleycrafter.models.specvqgan.onset_baseline.utils import torch_utils
from transformers import CLIPVisionModelWithProjection, CLIPImageProcessor
from huggingface_hub import snapshot_download
from diffusers import DDIMScheduler, EulerDiscreteScheduler, PNDMScheduler
import soundfile as sf
from moviepy.editor import AudioFileClip, VideoFileClip
os.environ['GRADIO_TEMP_DIR'] = './tmp'
sample_idx = 0
scheduler_dict = {
"DDIM": DDIMScheduler,
"Euler": EulerDiscreteScheduler,
"PNDM": PNDMScheduler,
}
css = """
.toolbutton {
margin-buttom: 0em 0em 0em 0em;
max-width: 2.5em;
min-width: 2.5em !important;
height: 2.5em;
}
"""
parser = ArgumentParser()
parser.add_argument("--config", type=str, default="example/config/base.yaml")
parser.add_argument("--server-name", type=str, default="0.0.0.0")
parser.add_argument("--port", type=int, default=7860)
parser.add_argument("--share", type=bool, default=True)
parser.add_argument("--save-path", default="samples")
args = parser.parse_args()
N_PROMPT = (
""
)
class FoleyController:
def __init__(self):
# config dirs
self.basedir = os.getcwd()
self.model_dir = os.path.join(self.basedir, "models")
self.savedir = os.path.join(self.basedir, args.save_path, datetime.now().strftime("Gradio-%Y-%m-%dT%H-%M-%S"))
self.savedir_sample = os.path.join(self.savedir, "sample")
os.makedirs(self.savedir, exist_ok=True)
self.pipeline = None
self.loaded = False
self.load_model()
def load_model(self):
gr.Info("Start Load Models...")
print("Start Load Models...")
# download ckpt
pretrained_model_name_or_path = 'auffusion/auffusion-full-no-adapter'
if not os.path.isdir(pretrained_model_name_or_path):
pretrained_model_name_or_path = snapshot_download(pretrained_model_name_or_path, local_dir='models/auffusion')
fc_ckpt = 'ymzhang319/FoleyCrafter'
if not os.path.isdir(fc_ckpt):
fc_ckpt = snapshot_download(fc_ckpt, local_dir='models/')
# set model config
temporal_ckpt_path = osp.join(self.model_dir, 'temporal_adapter.ckpt')
# load vocoder
vocoder_config_path= "./models/auffusion"
self.vocoder = Generator.from_pretrained(
vocoder_config_path,
subfolder="vocoder")
# load time detector
time_detector_ckpt = osp.join(osp.join(self.model_dir, 'timestamp_detector.pth.tar'))
time_detector = VideoOnsetNet(False)
self.time_detector, _ = torch_utils.load_model(time_detector_ckpt, time_detector, strict=True)
self.pipeline = build_foleycrafter()
ckpt = torch.load(temporal_ckpt_path)
# load temporal adapter
if 'state_dict' in ckpt.keys():
ckpt = ckpt['state_dict']
load_gligen_ckpt = {}
for key, value in ckpt.items():
if key.startswith('module.'):
load_gligen_ckpt[key[len('module.'):]] = value
else:
load_gligen_ckpt[key] = value
m, u = self.pipeline.controlnet.load_state_dict(load_gligen_ckpt, strict=False)
print(f"### Control Net missing keys: {len(m)}; \n### unexpected keys: {len(u)};")
self.image_processor = CLIPImageProcessor()
self.image_encoder = CLIPVisionModelWithProjection.from_pretrained('h94/IP-Adapter', subfolder='models/image_encoder')
self.pipeline.load_ip_adapter(fc_ckpt, subfolder='semantic', weight_name='semantic_adapter.bin', image_encoder_folder=None)
gr.Info("Load Finish!")
print("Load Finish!")
self.loaded = True
return "Load"
@spaces.GPU
def foley(
self,
input_video,
prompt_textbox,
negative_prompt_textbox,
ip_adapter_scale,
temporal_scale,
sampler_dropdown,
sample_step_slider,
cfg_scale_slider,
seed_textbox,
):
device = 'cuda'
# move to gpu
self.time_detector = controller.time_detector.to(device)
self.pipeline = controller.pipeline.to(device)
self.vocoder = controller.vocoder.to(device)
self.image_encoder = controller.image_encoder.to(device)
vision_transform_list = [
torchvision.transforms.Resize((128, 128)),
torchvision.transforms.CenterCrop((112, 112)),
torchvision.transforms.Normalize(mean=[0.485, 0.456, 0.406], std=[0.229, 0.224, 0.225])
]
video_transform = torchvision.transforms.Compose(vision_transform_list)
# if not self.loaded:
# raise gr.Error("Error with loading model")
generator = torch.Generator()
if seed_textbox != "":
torch.manual_seed(int(seed_textbox))
generator.manual_seed(int(seed_textbox))
max_frame_nums = 150
frames, duration = read_frames_with_moviepy(input_video, max_frame_nums=max_frame_nums)
if duration >= 10:
duration = 10
time_frames = torch.FloatTensor(frames).permute(0, 3, 1, 2).to(device)
time_frames = video_transform(time_frames)
time_frames = {'frames': time_frames.unsqueeze(0).permute(0, 2, 1, 3, 4)}
preds = self.time_detector(time_frames)
preds = torch.sigmoid(preds)
# duration
time_condition = [-1 if preds[0][int(i / (1024 / 10 * duration) * max_frame_nums)] < 0.5 else 1 for i in range(int(1024 / 10 * duration))]
time_condition = time_condition + [-1] * (1024 - len(time_condition))
# w -> b c h w
time_condition = torch.FloatTensor(time_condition).unsqueeze(0).unsqueeze(0).unsqueeze(0).repeat(1, 1, 256, 1)
# Note that clip need fewer frames
frames = frames[::10]
images = self.image_processor(images=frames, return_tensors="pt").to(device)
image_embeddings = self.image_encoder(**images).image_embeds
image_embeddings = torch.mean(image_embeddings, dim=0, keepdim=True).unsqueeze(0).unsqueeze(0)
neg_image_embeddings = torch.zeros_like(image_embeddings)
image_embeddings = torch.cat([neg_image_embeddings, image_embeddings], dim=1)
self.pipeline.set_ip_adapter_scale(ip_adapter_scale)
sample = self.pipeline(
prompt=prompt_textbox,
negative_prompt=negative_prompt_textbox,
ip_adapter_image_embeds=image_embeddings,
image=time_condition,
controlnet_conditioning_scale=float(temporal_scale),
num_inference_steps=sample_step_slider,
height=256,
width=1024,
output_type="pt",
generator=generator,
)
name = 'output'
audio_img = sample.images[0]
audio = denormalize_spectrogram(audio_img)
audio = self.vocoder.inference(audio, lengths=160000)[0]
audio_save_path = osp.join(self.savedir_sample, 'audio')
os.makedirs(audio_save_path, exist_ok=True)
audio = audio[:int(duration * 16000)]
save_path = osp.join(audio_save_path, f'{name}.wav')
sf.write(save_path, audio, 16000)
audio = AudioFileClip(osp.join(audio_save_path, f'{name}.wav'))
video = VideoFileClip(input_video)
audio = audio.subclip(0, duration)
video.audio = audio
video = video.subclip(0, duration)
video.write_videofile(osp.join(self.savedir_sample, f'{name}.mp4'))
save_sample_path = os.path.join(self.savedir_sample, f"{name}.mp4")
return save_sample_path
controller = FoleyController()
device = "cuda" if torch.cuda.is_available() else "cpu"
with gr.Blocks(css=css) as demo:
gr.HTML(
'<h1 style="height: 136px; display: flex; align-items: center; justify-content: space-around;"><span style="height: 100%; width:136px;"><img src="file/foleycrafter.png" alt="logo" style="height: 100%; width:auto; object-fit: contain; margin: 0px 0px; padding: 0px 0px;"></span><strong style="font-size: 36px;">FoleyCrafter: Bring Silent Videos to Life with Lifelike and Synchronized Sounds</strong></h1>'
)
gr.HTML(
'<p id="authors" style="text-align:center; font-size:24px;"> \
<a href="https://github.com/ymzhang0319">Yiming Zhang</a><sup>1</sup>,  \
<a href="https://github.com/VocodexElysium">Yicheng Gu</a><sup>2</sup>,  \
<a href="https://zengyh1900.github.io/">Yanhong Zeng</a><sup>1 †</sup>,  \
<a href="https://github.com/LeoXing1996/">Zhening Xing</a><sup>1</sup>,  \
<a href="https://github.com/HeCheng0625">Yuancheng Wang</a><sup>2</sup>,  \
<a href="https://drwuz.com/">Zhizheng Wu</a><sup>2</sup>,  \
<a href="https://chenkai.site/">Kai Chen</a><sup>1 †</sup>\
<br>\
<span>\
<sup>1</sup>Shanghai AI Laboratory \
<sup>2</sup>Chinese University of Hong Kong, Shenzhen \
†Corresponding author\
</span>\
</p>'
)
with gr.Row():
gr.Markdown(
"<div align='center'><font size='5'><a href='https://foleycrafter.github.io/'>Project Page</a>  " # noqa
"<a href='https://arxiv.org/abs/2407.01494/'>Paper</a>  "
"<a href='https://github.com/open-mmlab/foleycrafter'>Code</a>  "
"<a href='https://huggingface.co/spaces/ymzhang319/FoleyCrafter'>Demo</a> </font></div>"
)
with gr.Column(variant="panel"):
with gr.Row(equal_height=False):
with gr.Column():
with gr.Row():
init_img = gr.Video(label="Input Video")
with gr.Row():
prompt_textbox = gr.Textbox(value='', label="Prompt", lines=1)
with gr.Row():
negative_prompt_textbox = gr.Textbox(value=N_PROMPT, label="Negative prompt", lines=1)
with gr.Row():
ip_adapter_scale = gr.Slider(label="Visual Content Scale", value=1.0, minimum=0, maximum=1)
temporal_scale = gr.Slider(label="Temporal Align Scale", value=0.2, minimum=0., maximum=1.0)
with gr.Accordion("Sampling Settings", open=False):
with gr.Row():
sampler_dropdown = gr.Dropdown(
label="Sampling method",
choices=list(scheduler_dict.keys()),
value=list(scheduler_dict.keys())[0],
)
sample_step_slider = gr.Slider(
label="Sampling steps", value=25, minimum=10, maximum=100, step=1
)
cfg_scale_slider = gr.Slider(label="CFG Scale", value=7.5, minimum=0, maximum=20)
with gr.Row():
seed_textbox = gr.Textbox(label="Seed", value=42)
seed_button = gr.Button(value="\U0001f3b2", elem_classes="toolbutton")
seed_button.click(fn=lambda x: random.randint(1, 1e8), outputs=[seed_textbox], queue=False)
generate_button = gr.Button(value="Generate", variant="primary")
with gr.Column():
result_video = gr.Video(label="Generated Audio", interactive=False)
with gr.Row():
gr.Markdown(
"<div style='word-spacing: 6px;'><font size='5'><b>Tips</b>: <br> \
1. With strong temporal visual cues in input video, you can scale up the <b>Temporal Align Scale</b>. <br>\
2. <b>Visual content scale</b> is the level of semantic alignment with visual content.</font></div> \
")
# gr.HTML(
# '<p style="font-size: 16px;">**Tips**: <br> \
# 1. With strong temporal visual cues in input video, you can scale up the **Temporal Align Scale**. <br>\
# 2. **Visual content scale** is the level of semantic alignment with visual content.</p> \
# ')
generate_button.click(
fn=controller.foley,
inputs=[
init_img,
prompt_textbox,
negative_prompt_textbox,
ip_adapter_scale,
temporal_scale,
sampler_dropdown,
sample_step_slider,
cfg_scale_slider,
seed_textbox,
],
outputs=[result_video],
)
gr.Examples(
# examples= [
# ['examples/videos/51701454.mp4', 'seagulls', '', 1.0, 'DDIM', 25, 7.5, 10014024412012338098],
# ['examples/videos/42.mp4', '', '', 1.0, 'DDIM', 25, 7.5, 42],
# ['examples/videos/1.mp4', '', '', 1.0, 'DDIM', 25, 7.5, 93493458],
# ['examples/videos/2.mp4', '', '', 1.0, 'DDIM', 25, 7.5, 16520432],
# ],
examples=[
['examples/input/case1.mp4', '', '', 1.0, 0.2, 'DDIM', 25, 7.5, 33817921],
['examples/input/case3.mp4', '', '', 1.0, 0.2,'DDIM', 25, 7.5, 94667578],
['examples/input/case5.mp4', '', '', 0.75, 0.2,'DDIM', 25, 7.5, 92890876],
['examples/input/case6.mp4', '', '', 1.0, 0.2, 'DDIM', 25, 7.5, 77015909],
],
inputs=[init_img,prompt_textbox,negative_prompt_textbox,ip_adapter_scale,temporal_scale,sampler_dropdown,sample_step_slider,cfg_scale_slider,seed_textbox],
cache_examples=False,
outputs=[result_video],
fn=controller.foley,
)
demo.queue(10)
demo.launch(server_name=args.server_name, server_port=args.port, share=args.share, allowed_paths=["./foleycrafter.png"]) |