File size: 6,316 Bytes
21c4e64
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
import torch
import torch.nn as nn
import torch.nn.functional as F
import numpy as np

import kiui
from kiui.lpips import LPIPS

from core.unet import UNet
from core.options import Options
from core.gs import GaussianRenderer


class LGM(nn.Module):
    def __init__(
        self,
        opt: Options,
    ):
        super().__init__()

        self.opt = opt

        # unet
        self.unet = UNet(
            9, 14, 
            down_channels=self.opt.down_channels,
            down_attention=self.opt.down_attention,
            mid_attention=self.opt.mid_attention,
            up_channels=self.opt.up_channels,
            up_attention=self.opt.up_attention,
        )

        # last conv
        self.conv = nn.Conv2d(14, 14, kernel_size=1) # NOTE: maybe remove it if train again

        # Gaussian Renderer
        self.gs = GaussianRenderer(opt)

        # activations...
        self.pos_act = lambda x: x.clamp(-1, 1)
        self.scale_act = lambda x: 0.1 * F.softplus(x)
        self.opacity_act = lambda x: torch.sigmoid(x)
        self.rot_act = lambda x: F.normalize(x, dim=-1)
        self.rgb_act = lambda x: 0.5 * torch.tanh(x) + 0.5 # NOTE: may use sigmoid if train again

        # LPIPS loss
        if self.opt.lambda_lpips > 0:
            self.lpips_loss = LPIPS(net='vgg')
            self.lpips_loss.requires_grad_(False)


    def state_dict(self, **kwargs):
        # remove lpips_loss
        state_dict = super().state_dict(**kwargs)
        for k in list(state_dict.keys()):
            if 'lpips_loss' in k:
                del state_dict[k]
        return state_dict


    def prepare_default_rays(self, device, elevation=0):
        
        from kiui.cam import orbit_camera
        from core.utils import get_rays

        cam_poses = np.stack([
            orbit_camera(elevation, 0, radius=self.opt.cam_radius),
            orbit_camera(elevation, 90, radius=self.opt.cam_radius),
            orbit_camera(elevation, 180, radius=self.opt.cam_radius),
            orbit_camera(elevation, 270, radius=self.opt.cam_radius),
        ], axis=0) # [4, 4, 4]
        cam_poses = torch.from_numpy(cam_poses)

        rays_embeddings = []
        for i in range(cam_poses.shape[0]):
            rays_o, rays_d = get_rays(cam_poses[i], self.opt.input_size, self.opt.input_size, self.opt.fovy) # [h, w, 3]
            rays_plucker = torch.cat([torch.cross(rays_o, rays_d, dim=-1), rays_d], dim=-1) # [h, w, 6]
            rays_embeddings.append(rays_plucker)

            ## visualize rays for plotting figure
            # kiui.vis.plot_image(rays_d * 0.5 + 0.5, save=True)

        rays_embeddings = torch.stack(rays_embeddings, dim=0).permute(0, 3, 1, 2).contiguous().to(device) # [V, 6, h, w]
        
        return rays_embeddings
        

    def forward_gaussians(self, images):
        # images: [B, 4, 9, H, W]
        # return: Gaussians: [B, dim_t]

        B, V, C, H, W = images.shape
        images = images.view(B*V, C, H, W)

        x = self.unet(images) # [B*4, 14, h, w]
        x = self.conv(x) # [B*4, 14, h, w]

        x = x.reshape(B, 4, 14, self.opt.splat_size, self.opt.splat_size)
        
        ## visualize multi-view gaussian features for plotting figure
        # tmp_alpha = self.opacity_act(x[0, :, 3:4])
        # tmp_img_rgb = self.rgb_act(x[0, :, 11:]) * tmp_alpha + (1 - tmp_alpha)
        # tmp_img_pos = self.pos_act(x[0, :, 0:3]) * 0.5 + 0.5
        # kiui.vis.plot_image(tmp_img_rgb, save=True)
        # kiui.vis.plot_image(tmp_img_pos, save=True)

        x = x.permute(0, 1, 3, 4, 2).reshape(B, -1, 14)
        
        pos = self.pos_act(x[..., 0:3]) # [B, N, 3]
        opacity = self.opacity_act(x[..., 3:4])
        scale = self.scale_act(x[..., 4:7])
        rotation = self.rot_act(x[..., 7:11])
        rgbs = self.rgb_act(x[..., 11:])

        gaussians = torch.cat([pos, opacity, scale, rotation, rgbs], dim=-1) # [B, N, 14]
        
        return gaussians

    
    def forward(self, data, step_ratio=1):
        # data: output of the dataloader
        # return: loss

        results = {}
        loss = 0

        images = data['input'] # [B, 4, 9, h, W], input features
        
        # use the first view to predict gaussians
        gaussians = self.forward_gaussians(images) # [B, N, 14]

        results['gaussians'] = gaussians

        # always use white bg
        bg_color = torch.ones(3, dtype=torch.float32, device=gaussians.device)
        
        # use the other views for rendering and supervision
        results = self.gs.render(gaussians, data['cam_view'], data['cam_view_proj'], data['cam_pos'], bg_color=bg_color)
        pred_images = results['image'] # [B, V, C, output_size, output_size]
        pred_alphas = results['alpha'] # [B, V, 1, output_size, output_size]

        results['images_pred'] = pred_images
        results['alphas_pred'] = pred_alphas

        gt_images = data['images_output'] # [B, V, 3, output_size, output_size], ground-truth novel views
        gt_masks = data['masks_output'] # [B, V, 1, output_size, output_size], ground-truth masks

        gt_images = gt_images * gt_masks + bg_color.view(1, 1, 3, 1, 1) * (1 - gt_masks)

        loss_mse = F.mse_loss(pred_images, gt_images) + F.mse_loss(pred_alphas, gt_masks)
        loss = loss + loss_mse

        if self.opt.lambda_lpips > 0:
            loss_lpips = self.lpips_loss(
                # gt_images.view(-1, 3, self.opt.output_size, self.opt.output_size) * 2 - 1,
                # pred_images.view(-1, 3, self.opt.output_size, self.opt.output_size) * 2 - 1,
                # downsampled to at most 256 to reduce memory cost
                F.interpolate(gt_images.view(-1, 3, self.opt.output_size, self.opt.output_size) * 2 - 1, (256, 256), mode='bilinear', align_corners=False), 
                F.interpolate(pred_images.view(-1, 3, self.opt.output_size, self.opt.output_size) * 2 - 1, (256, 256), mode='bilinear', align_corners=False),
            ).mean()
            results['loss_lpips'] = loss_lpips
            loss = loss + self.opt.lambda_lpips * loss_lpips
            
        results['loss'] = loss

        # metric
        with torch.no_grad():
            psnr = -10 * torch.log10(torch.mean((pred_images.detach() - gt_images) ** 2))
            results['psnr'] = psnr

        return results