Spaces:
Runtime error
Runtime error
File size: 10,869 Bytes
21c4e64 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 |
from transformers import CLIPTextModel, CLIPTokenizer, logging
from diffusers import (
AutoencoderKL,
UNet2DConditionModel,
PNDMScheduler,
DDIMScheduler,
StableDiffusionPipeline,
)
from diffusers.utils.import_utils import is_xformers_available
# suppress partial model loading warning
logging.set_verbosity_error()
import numpy as np
import torch
import torch.nn as nn
import torch.nn.functional as F
def seed_everything(seed):
torch.manual_seed(seed)
torch.cuda.manual_seed(seed)
# torch.backends.cudnn.deterministic = True
# torch.backends.cudnn.benchmark = True
class StableDiffusion(nn.Module):
def __init__(
self,
device,
fp16=True,
vram_O=False,
sd_version="2.1",
hf_key=None,
t_range=[0.02, 0.98],
):
super().__init__()
self.device = device
self.sd_version = sd_version
if hf_key is not None:
print(f"[INFO] using hugging face custom model key: {hf_key}")
model_key = hf_key
elif self.sd_version == "2.1":
model_key = "stabilityai/stable-diffusion-2-1-base"
elif self.sd_version == "2.0":
model_key = "stabilityai/stable-diffusion-2-base"
elif self.sd_version == "1.5":
model_key = "runwayml/stable-diffusion-v1-5"
else:
raise ValueError(
f"Stable-diffusion version {self.sd_version} not supported."
)
self.dtype = torch.float16 if fp16 else torch.float32
# Create model
pipe = StableDiffusionPipeline.from_pretrained(
model_key, torch_dtype=self.dtype
)
if vram_O:
pipe.enable_sequential_cpu_offload()
pipe.enable_vae_slicing()
pipe.unet.to(memory_format=torch.channels_last)
pipe.enable_attention_slicing(1)
# pipe.enable_model_cpu_offload()
else:
pipe.to(device)
self.vae = pipe.vae
self.tokenizer = pipe.tokenizer
self.text_encoder = pipe.text_encoder
self.unet = pipe.unet
self.scheduler = DDIMScheduler.from_pretrained(
model_key, subfolder="scheduler", torch_dtype=self.dtype
)
del pipe
self.num_train_timesteps = self.scheduler.config.num_train_timesteps
self.min_step = int(self.num_train_timesteps * t_range[0])
self.max_step = int(self.num_train_timesteps * t_range[1])
self.alphas = self.scheduler.alphas_cumprod.to(self.device) # for convenience
self.embeddings = None
@torch.no_grad()
def get_text_embeds(self, prompts, negative_prompts):
pos_embeds = self.encode_text(prompts) # [1, 77, 768]
neg_embeds = self.encode_text(negative_prompts)
self.embeddings = torch.cat([neg_embeds, pos_embeds], dim=0) # [2, 77, 768]
def encode_text(self, prompt):
# prompt: [str]
inputs = self.tokenizer(
prompt,
padding="max_length",
max_length=self.tokenizer.model_max_length,
return_tensors="pt",
)
embeddings = self.text_encoder(inputs.input_ids.to(self.device))[0]
return embeddings
@torch.no_grad()
def refine(self, pred_rgb,
guidance_scale=100, steps=50, strength=0.8,
):
batch_size = pred_rgb.shape[0]
pred_rgb_512 = F.interpolate(pred_rgb, (512, 512), mode='bilinear', align_corners=False)
latents = self.encode_imgs(pred_rgb_512.to(self.dtype))
# latents = torch.randn((1, 4, 64, 64), device=self.device, dtype=self.dtype)
self.scheduler.set_timesteps(steps)
init_step = int(steps * strength)
latents = self.scheduler.add_noise(latents, torch.randn_like(latents), self.scheduler.timesteps[init_step])
for i, t in enumerate(self.scheduler.timesteps[init_step:]):
latent_model_input = torch.cat([latents] * 2)
noise_pred = self.unet(
latent_model_input, t, encoder_hidden_states=self.embeddings,
).sample
noise_pred_uncond, noise_pred_cond = noise_pred.chunk(2)
noise_pred = noise_pred_uncond + guidance_scale * (noise_pred_cond - noise_pred_uncond)
latents = self.scheduler.step(noise_pred, t, latents).prev_sample
imgs = self.decode_latents(latents) # [1, 3, 512, 512]
return imgs
def train_step(
self,
pred_rgb,
step_ratio=None,
guidance_scale=100,
as_latent=False,
):
batch_size = pred_rgb.shape[0]
pred_rgb = pred_rgb.to(self.dtype)
if as_latent:
latents = F.interpolate(pred_rgb, (64, 64), mode="bilinear", align_corners=False) * 2 - 1
else:
# interp to 512x512 to be fed into vae.
pred_rgb_512 = F.interpolate(pred_rgb, (512, 512), mode="bilinear", align_corners=False)
# encode image into latents with vae, requires grad!
latents = self.encode_imgs(pred_rgb_512)
if step_ratio is not None:
# dreamtime-like
# t = self.max_step - (self.max_step - self.min_step) * np.sqrt(step_ratio)
t = np.round((1 - step_ratio) * self.num_train_timesteps).clip(self.min_step, self.max_step)
t = torch.full((batch_size,), t, dtype=torch.long, device=self.device)
else:
t = torch.randint(self.min_step, self.max_step + 1, (batch_size,), dtype=torch.long, device=self.device)
# w(t), sigma_t^2
w = (1 - self.alphas[t]).view(batch_size, 1, 1, 1)
# predict the noise residual with unet, NO grad!
with torch.no_grad():
# add noise
noise = torch.randn_like(latents)
latents_noisy = self.scheduler.add_noise(latents, noise, t)
# pred noise
latent_model_input = torch.cat([latents_noisy] * 2)
tt = torch.cat([t] * 2)
noise_pred = self.unet(
latent_model_input, tt, encoder_hidden_states=self.embeddings.repeat(batch_size, 1, 1)
).sample
# perform guidance (high scale from paper!)
noise_pred_uncond, noise_pred_pos = noise_pred.chunk(2)
noise_pred = noise_pred_uncond + guidance_scale * (
noise_pred_pos - noise_pred_uncond
)
grad = w * (noise_pred - noise)
grad = torch.nan_to_num(grad)
# seems important to avoid NaN...
# grad = grad.clamp(-1, 1)
target = (latents - grad).detach()
loss = 0.5 * F.mse_loss(latents.float(), target, reduction='sum') / latents.shape[0]
return loss
@torch.no_grad()
def produce_latents(
self,
height=512,
width=512,
num_inference_steps=50,
guidance_scale=7.5,
latents=None,
):
if latents is None:
latents = torch.randn(
(
self.embeddings.shape[0] // 2,
self.unet.in_channels,
height // 8,
width // 8,
),
device=self.device,
)
self.scheduler.set_timesteps(num_inference_steps)
for i, t in enumerate(self.scheduler.timesteps):
# expand the latents if we are doing classifier-free guidance to avoid doing two forward passes.
latent_model_input = torch.cat([latents] * 2)
# predict the noise residual
noise_pred = self.unet(
latent_model_input, t, encoder_hidden_states=self.embeddings
).sample
# perform guidance
noise_pred_uncond, noise_pred_cond = noise_pred.chunk(2)
noise_pred = noise_pred_uncond + guidance_scale * (
noise_pred_cond - noise_pred_uncond
)
# compute the previous noisy sample x_t -> x_t-1
latents = self.scheduler.step(noise_pred, t, latents).prev_sample
return latents
def decode_latents(self, latents):
latents = 1 / self.vae.config.scaling_factor * latents
imgs = self.vae.decode(latents).sample
imgs = (imgs / 2 + 0.5).clamp(0, 1)
return imgs
def encode_imgs(self, imgs):
# imgs: [B, 3, H, W]
imgs = 2 * imgs - 1
posterior = self.vae.encode(imgs).latent_dist
latents = posterior.sample() * self.vae.config.scaling_factor
return latents
def prompt_to_img(
self,
prompts,
negative_prompts="",
height=512,
width=512,
num_inference_steps=50,
guidance_scale=7.5,
latents=None,
):
if isinstance(prompts, str):
prompts = [prompts]
if isinstance(negative_prompts, str):
negative_prompts = [negative_prompts]
# Prompts -> text embeds
self.get_text_embeds(prompts, negative_prompts)
# Text embeds -> img latents
latents = self.produce_latents(
height=height,
width=width,
latents=latents,
num_inference_steps=num_inference_steps,
guidance_scale=guidance_scale,
) # [1, 4, 64, 64]
# Img latents -> imgs
imgs = self.decode_latents(latents) # [1, 3, 512, 512]
# Img to Numpy
imgs = imgs.detach().cpu().permute(0, 2, 3, 1).numpy()
imgs = (imgs * 255).round().astype("uint8")
return imgs
if __name__ == "__main__":
import argparse
import matplotlib.pyplot as plt
parser = argparse.ArgumentParser()
parser.add_argument("prompt", type=str)
parser.add_argument("--negative", default="", type=str)
parser.add_argument(
"--sd_version",
type=str,
default="2.1",
choices=["1.5", "2.0", "2.1"],
help="stable diffusion version",
)
parser.add_argument(
"--hf_key",
type=str,
default=None,
help="hugging face Stable diffusion model key",
)
parser.add_argument("--fp16", action="store_true", help="use float16 for training")
parser.add_argument(
"--vram_O", action="store_true", help="optimization for low VRAM usage"
)
parser.add_argument("-H", type=int, default=512)
parser.add_argument("-W", type=int, default=512)
parser.add_argument("--seed", type=int, default=0)
parser.add_argument("--steps", type=int, default=50)
opt = parser.parse_args()
seed_everything(opt.seed)
device = torch.device("cuda")
sd = StableDiffusion(device, opt.fp16, opt.vram_O, opt.sd_version, opt.hf_key)
imgs = sd.prompt_to_img(opt.prompt, opt.negative, opt.H, opt.W, opt.steps)
# visualize image
plt.imshow(imgs[0])
plt.show()
|