dreamgaussian4d / guidance /imagedream_utils.py
jiaweir
init
21c4e64
raw
history blame
13.1 kB
import numpy as np
import torch
import torch.nn as nn
import torch.nn.functional as F
import torchvision.transforms.functional as TF
from imagedream.camera_utils import get_camera, convert_opengl_to_blender, normalize_camera
from imagedream.model_zoo import build_model
from imagedream.ldm.models.diffusion.ddim import DDIMSampler
from diffusers import DDIMScheduler
class ImageDream(nn.Module):
def __init__(
self,
device,
model_name='sd-v2.1-base-4view-ipmv',
ckpt_path=None,
t_range=[0.02, 0.98],
):
super().__init__()
self.device = device
self.model_name = model_name
self.ckpt_path = ckpt_path
self.model = build_model(self.model_name, ckpt_path=self.ckpt_path).eval().to(self.device)
self.model.device = device
for p in self.model.parameters():
p.requires_grad_(False)
self.dtype = torch.float32
self.num_train_timesteps = 1000
self.min_step = int(self.num_train_timesteps * t_range[0])
self.max_step = int(self.num_train_timesteps * t_range[1])
self.image_embeddings = {}
self.embeddings = {}
self.scheduler = DDIMScheduler.from_pretrained(
"stabilityai/stable-diffusion-2-1-base", subfolder="scheduler", torch_dtype=self.dtype
)
@torch.no_grad()
def get_image_text_embeds(self, image, prompts, negative_prompts):
image = F.interpolate(image, (256, 256), mode='bilinear', align_corners=False)
image_pil = TF.to_pil_image(image[0])
image_embeddings = self.model.get_learned_image_conditioning(image_pil).repeat(5,1,1) # [5, 257, 1280]
self.image_embeddings['pos'] = image_embeddings
self.image_embeddings['neg'] = torch.zeros_like(image_embeddings)
self.image_embeddings['ip_img'] = self.encode_imgs(image)
self.image_embeddings['neg_ip_img'] = torch.zeros_like(self.image_embeddings['ip_img'])
pos_embeds = self.encode_text(prompts).repeat(5,1,1)
neg_embeds = self.encode_text(negative_prompts).repeat(5,1,1)
self.embeddings['pos'] = pos_embeds
self.embeddings['neg'] = neg_embeds
return self.image_embeddings['pos'], self.image_embeddings['neg'], self.image_embeddings['ip_img'], self.image_embeddings['neg_ip_img'], self.embeddings['pos'], self.embeddings['neg']
def encode_text(self, prompt):
# prompt: [str]
embeddings = self.model.get_learned_conditioning(prompt).to(self.device)
return embeddings
@torch.no_grad()
def refine(self, pred_rgb, camera,
guidance_scale=5, steps=50, strength=0.8,
):
batch_size = pred_rgb.shape[0]
real_batch_size = batch_size // 4
pred_rgb_256 = F.interpolate(pred_rgb, (256, 256), mode='bilinear', align_corners=False)
latents = self.encode_imgs(pred_rgb_256.to(self.dtype))
self.scheduler.set_timesteps(steps)
init_step = int(steps * strength)
latents = self.scheduler.add_noise(latents, torch.randn_like(latents), self.scheduler.timesteps[init_step])
camera = camera[:, [0, 2, 1, 3]] # to blender convention (flip y & z axis)
camera[:, 1] *= -1
camera = normalize_camera(camera).view(batch_size, 16)
# extra view
camera = camera.view(real_batch_size, 4, 16)
camera = torch.cat([camera, torch.zeros_like(camera[:, :1])], dim=1) # [rB, 5, 16]
camera = camera.view(real_batch_size * 5, 16)
camera = camera.repeat(2, 1)
embeddings = torch.cat([self.embeddings['neg'].repeat(real_batch_size, 1, 1), self.embeddings['pos'].repeat(real_batch_size, 1, 1)], dim=0)
image_embeddings = torch.cat([self.image_embeddings['neg'].repeat(real_batch_size, 1, 1), self.image_embeddings['pos'].repeat(real_batch_size, 1, 1)], dim=0)
ip_img_embeddings= torch.cat([self.image_embeddings['neg_ip_img'].repeat(real_batch_size, 1, 1, 1), self.image_embeddings['ip_img'].repeat(real_batch_size, 1, 1, 1)], dim=0)
context = {
"context": embeddings,
"ip": image_embeddings,
"ip_img": ip_img_embeddings,
"camera": camera,
"num_frames": 4 + 1
}
for i, t in enumerate(self.scheduler.timesteps[init_step:]):
# extra view
latents = latents.view(real_batch_size, 4, 4, 32, 32)
latents = torch.cat([latents, torch.zeros_like(latents[:, :1])], dim=1).view(-1, 4, 32, 32)
latent_model_input = torch.cat([latents] * 2)
tt = torch.cat([t.unsqueeze(0).repeat(real_batch_size * 5)] * 2).to(self.device)
noise_pred = self.model.apply_model(latent_model_input, tt, context)
noise_pred_uncond, noise_pred_cond = noise_pred.chunk(2)
# remove extra view
noise_pred_uncond = noise_pred_uncond.reshape(real_batch_size, 5, 4, 32, 32)[:, :-1].reshape(-1, 4, 32, 32)
noise_pred_cond = noise_pred_cond.reshape(real_batch_size, 5, 4, 32, 32)[:, :-1].reshape(-1, 4, 32, 32)
latents = latents.reshape(real_batch_size, 5, 4, 32, 32)[:, :-1].reshape(-1, 4, 32, 32)
noise_pred = noise_pred_uncond + guidance_scale * (noise_pred_cond - noise_pred_uncond)
latents = self.scheduler.step(noise_pred, t, latents).prev_sample
imgs = self.decode_latents(latents) # [1, 3, 512, 512]
return imgs
def train_step(
self,
pred_rgb, # [B, C, H, W]
camera, # [B, 4, 4]
step_ratio=None,
guidance_scale=5,
as_latent=False,
):
batch_size = pred_rgb.shape[0]
real_batch_size = batch_size // 4
pred_rgb = pred_rgb.to(self.dtype)
if as_latent:
latents = F.interpolate(pred_rgb, (32, 32), mode="bilinear", align_corners=False) * 2 - 1
else:
# interp to 256x256 to be fed into vae.
pred_rgb_256 = F.interpolate(pred_rgb, (256, 256), mode="bilinear", align_corners=False)
# encode image into latents with vae, requires grad!
latents = self.encode_imgs(pred_rgb_256)
if step_ratio is not None:
# dreamtime-like
# t = self.max_step - (self.max_step - self.min_step) * np.sqrt(step_ratio)
t = np.round((1 - step_ratio) * self.num_train_timesteps).clip(self.min_step, self.max_step)
t = torch.full((batch_size,), t, dtype=torch.long, device=self.device)
else:
t = torch.randint(self.min_step, self.max_step + 1, (real_batch_size,), dtype=torch.long, device=self.device).repeat(4)
camera = camera[:, [0, 2, 1, 3]] # to blender convention (flip y & z axis)
camera[:, 1] *= -1
camera = normalize_camera(camera).view(batch_size, 16)
# extra view
camera = camera.view(real_batch_size, 4, 16)
camera = torch.cat([camera, torch.zeros_like(camera[:, :1])], dim=1) # [rB, 5, 16]
camera = camera.view(real_batch_size * 5, 16)
camera = camera.repeat(2, 1)
embeddings = torch.cat([self.embeddings['neg'].repeat(real_batch_size, 1, 1), self.embeddings['pos'].repeat(real_batch_size, 1, 1)], dim=0)
image_embeddings = torch.cat([self.image_embeddings['neg'].repeat(real_batch_size, 1, 1), self.image_embeddings['pos'].repeat(real_batch_size, 1, 1)], dim=0)
ip_img_embeddings= torch.cat([self.image_embeddings['neg_ip_img'].repeat(real_batch_size, 1, 1, 1), self.image_embeddings['ip_img'].repeat(real_batch_size, 1, 1, 1)], dim=0)
context = {
"context": embeddings,
"ip": image_embeddings,
"ip_img": ip_img_embeddings,
"camera": camera,
"num_frames": 4 + 1
}
# predict the noise residual with unet, NO grad!
with torch.no_grad():
# add noise
noise = torch.randn_like(latents)
latents_noisy = self.model.q_sample(latents, t, noise) # [B=4, 4, 32, 32]
# extra view
t = t.view(real_batch_size, 4)
t = torch.cat([t, t[:, :1]], dim=1).view(-1)
latents_noisy = latents_noisy.view(real_batch_size, 4, 4, 32, 32)
latents_noisy = torch.cat([latents_noisy, torch.zeros_like(latents_noisy[:, :1])], dim=1).view(-1, 4, 32, 32)
# pred noise
latent_model_input = torch.cat([latents_noisy] * 2)
tt = torch.cat([t] * 2)
# import kiui
# kiui.lo(latent_model_input, t, context['context'], context['camera'])
noise_pred = self.model.apply_model(latent_model_input, tt, context)
# perform guidance (high scale from paper!)
noise_pred_uncond, noise_pred_cond = noise_pred.chunk(2)
# remove extra view
noise_pred_uncond = noise_pred_uncond.reshape(real_batch_size, 5, 4, 32, 32)[:, :-1].reshape(-1, 4, 32, 32)
noise_pred_cond = noise_pred_cond.reshape(real_batch_size, 5, 4, 32, 32)[:, :-1].reshape(-1, 4, 32, 32)
noise_pred = noise_pred_uncond + guidance_scale * (noise_pred_cond - noise_pred_uncond)
grad = (noise_pred - noise)
grad = torch.nan_to_num(grad)
target = (latents - grad).detach()
loss = 0.5 * F.mse_loss(latents.float(), target, reduction='sum') / latents.shape[0]
return loss
def decode_latents(self, latents):
imgs = self.model.decode_first_stage(latents)
imgs = ((imgs + 1) / 2).clamp(0, 1)
return imgs
def encode_imgs(self, imgs):
# imgs: [B, 3, 256, 256]
imgs = 2 * imgs - 1
latents = self.model.get_first_stage_encoding(self.model.encode_first_stage(imgs))
return latents # [B, 4, 32, 32]
@torch.no_grad()
def prompt_to_img(
self,
image,
prompts,
negative_prompts="",
height=256,
width=256,
num_inference_steps=50,
guidance_scale=5.0,
latents=None,
elevation=0,
azimuth_start=0,
):
if isinstance(prompts, str):
prompts = [prompts]
if isinstance(negative_prompts, str):
negative_prompts = [negative_prompts]
real_batch_size = len(prompts)
batch_size = len(prompts) * 5
# Text embeds -> img latents
sampler = DDIMSampler(self.model)
shape = [4, height // 8, width // 8]
c_ = {"context": self.encode_text(prompts).repeat(5,1,1)}
uc_ = {"context": self.encode_text(negative_prompts).repeat(5,1,1)}
# image embeddings
image = F.interpolate(image, (256, 256), mode='bilinear', align_corners=False)
image_pil = TF.to_pil_image(image[0])
image_embeddings = self.model.get_learned_image_conditioning(image_pil).repeat(5,1,1).to(self.device)
c_["ip"] = image_embeddings
uc_["ip"] = torch.zeros_like(image_embeddings)
ip_img = self.encode_imgs(image)
c_["ip_img"] = ip_img
uc_["ip_img"] = torch.zeros_like(ip_img)
camera = get_camera(4, elevation=elevation, azimuth_start=azimuth_start, extra_view=True)
camera = camera.repeat(real_batch_size, 1).to(self.device)
c_["camera"] = uc_["camera"] = camera
c_["num_frames"] = uc_["num_frames"] = 5
kiui.lo(image_embeddings, ip_img, camera)
latents, _ = sampler.sample(S=num_inference_steps, conditioning=c_,
batch_size=batch_size, shape=shape,
verbose=False,
unconditional_guidance_scale=guidance_scale,
unconditional_conditioning=uc_,
eta=0, x_T=None)
# Img latents -> imgs
imgs = self.decode_latents(latents) # [4, 3, 256, 256]
kiui.lo(latents, imgs)
# Img to Numpy
imgs = imgs.detach().cpu().permute(0, 2, 3, 1).numpy()
imgs = (imgs * 255).round().astype("uint8")
return imgs
if __name__ == "__main__":
import argparse
import matplotlib.pyplot as plt
import kiui
parser = argparse.ArgumentParser()
parser.add_argument("image", type=str)
parser.add_argument("prompt", type=str)
parser.add_argument("--negative", default="", type=str)
parser.add_argument("--steps", type=int, default=30)
opt = parser.parse_args()
device = torch.device("cuda")
sd = ImageDream(device)
image = kiui.read_image(opt.image, mode='tensor')
image = image.permute(2, 0, 1).unsqueeze(0).to(device)
while True:
imgs = sd.prompt_to_img(image, opt.prompt, opt.negative, num_inference_steps=opt.steps)
grid = np.concatenate([
np.concatenate([imgs[0], imgs[1]], axis=1),
np.concatenate([imgs[2], imgs[3]], axis=1),
], axis=0)
# visualize image
plt.imshow(grid)
plt.show()