yunusserhat's picture
Update app.py
d93bc09 verified
raw
history blame
12.9 kB
import streamlit as st
from PIL import Image
import torch
from torchvision import transforms
import pydeck as pdk
from geopy.geocoders import Nominatim
import time
import requests
from io import BytesIO
import reverse_geocoder as rg
from bs4 import BeautifulSoup
from urllib.parse import urljoin
from models.huggingface import Geolocalizer
import spacy
from collections import Counter
from spacy.cli import download
def load_spacy_model(model_name="en_core_web_md"):
try:
return spacy.load(model_name)
except IOError:
print(f"Model {model_name} not found, downloading...")
download(model_name)
return spacy.load(model_name)
nlp = load_spacy_model()
IMAGE_SIZE = (224, 224)
GEOLOC_MODEL_NAME = "osv5m/baseline"
# Load geolocation model
@st.cache_resource(show_spinner=True)
def load_geoloc_model() -> Geolocalizer:
with st.spinner('Loading model...'):
try:
model = Geolocalizer.from_pretrained(GEOLOC_MODEL_NAME)
model.eval()
return model
except Exception as e:
st.error(f"Failed to load the model: {e}")
return None
# Function to find the most frequent location
def most_frequent_locations(text: str):
doc = nlp(text)
locations = []
# Collect all identified location entities
for ent in doc.ents:
if ent.label_ in ['LOC', 'GPE']:
print(f"Entity: {ent.text} | Label: {ent.label_} | Sentence: {ent.sent}")
locations.append(ent.text)
# Count occurrences and extract the most common locations
if locations:
location_counts = Counter(locations)
most_common_locations = location_counts.most_common(2) # Adjust the number as needed
# Format the output to show location names along with their counts
common_locations_str = ', '.join([f"{loc[0]} ({loc[1]} occurrences)" for loc in most_common_locations])
return f"Most Mentioned Locations: {common_locations_str}", [loc[0] for loc in most_common_locations]
else:
return "No locations found", []
# Transform image for model prediction
def transform_image(image: Image) -> torch.Tensor:
transform = transforms.Compose([
transforms.Resize(IMAGE_SIZE),
transforms.ToTensor(),
transforms.Normalize(mean=[0.485, 0.456, 0.406], std=[0.229, 0.224, 0.225]),
])
return transform(image).unsqueeze(0)
def check_location_match(location_query, most_common_locations):
name = location_query['name']
admin1 = location_query['admin1']
cc = location_query['cc']
for loc in most_common_locations:
if name in loc and admin1 in loc and cc in loc:
return True
return False
# Fetch city GeoJSON data
def get_city_geojson(location_name: str) -> dict:
geolocator = Nominatim(user_agent="predictGeolocforImage")
try:
location = geolocator.geocode(location_name, geometry='geojson')
return location.raw['geojson'] if location else None
except Exception as e:
st.error(f"Failed to geocode location: {e}")
return None
# Fetch media from URL
def get_media(url: str) -> list:
try:
response = requests.get(url)
response.raise_for_status()
data = response.json()
return [(media['media_url'], entry['full_text'])
for entry in data for media in entry.get('media', []) if 'media_url' in media]
except requests.RequestException as e:
st.error(f"Failed to fetch media URL: {e}")
return None
# Predict location from image
def predict_location(image: Image, model: Geolocalizer) -> tuple:
with st.spinner('Processing image and predicting location...'):
start_time = time.time()
try:
img_tensor = transform_image(image)
gps_radians = model(img_tensor)
gps_degrees = torch.rad2deg(gps_radians).squeeze(0).cpu().tolist()
location_query = rg.search((gps_degrees[0], gps_degrees[1]))[0]
location_name = f"{location_query['name']}, {location_query['admin1']}, {location_query['cc']}"
city_geojson = get_city_geojson(location_name)
processing_time = time.time() - start_time
return gps_degrees, location_query, city_geojson, processing_time
except Exception as e:
st.error(f"Failed to predict the location: {e}")
return None
# Display map in Streamlit
def display_map(city_geojson: dict, gps_degrees: list) -> None:
map_view = pdk.Deck(
map_style='mapbox://styles/mapbox/light-v9',
initial_view_state=pdk.ViewState(
latitude=gps_degrees[0],
longitude=gps_degrees[1],
zoom=8,
pitch=0,
),
layers=[
pdk.Layer(
'GeoJsonLayer',
data=city_geojson,
get_fill_color=[255, 180, 0, 140],
pickable=True,
stroked=True,
filled=True,
extruded=False,
line_width_min_pixels=1,
),
],
)
st.pydeck_chart(map_view)
# Display image
def display_image(image_url: str) -> None:
try:
response = requests.get(image_url)
response.raise_for_status()
image_bytes = BytesIO(response.content)
st.image(image_bytes, caption=f'Image from URL: {image_url}', use_column_width=True)
except requests.RequestException as e:
st.error(f"Failed to fetch image at URL {image_url}: {e}")
except Exception as e:
st.error(f"An error occurred: {e}")
# Scrape webpage for text and images
def scrape_webpage(url: str) -> tuple:
with st.spinner('Scraping web page...'):
try:
response = requests.get(url)
response.raise_for_status()
soup = BeautifulSoup(response.content, 'html.parser')
base_url = url # Adjust based on <base> tags or other HTML clues
text = ''.join(p.text for p in soup.find_all('p'))
images = [urljoin(base_url, img['src']) for img in soup.find_all('img') if 'src' in img.attrs]
return text, images
except requests.RequestException as e:
st.error(f"Failed to fetch and parse the URL: {e}")
return None, None
def main():
st.title('Welcome to Geolocation Guesstimation Demo 👋')
# Define page navigation using the sidebar
page = st.sidebar.selectbox(
"Choose your action:",
("Home", "Images", "Social Media", "Web Pages"),
index=0 # Default to Home
)
st.sidebar.success("Select a demo above.")
st.sidebar.info(
"""
- Web App URL: <https://yunusserhat-guesstimatelocation.hf.space/>
""")
st.sidebar.title("Contact")
st.sidebar.info(
"""
Yunus Serhat Bıçakçı at [yunusserhat.com](https://yunusserhat.com) | [GitHub](https://github.com/yunusserhat) | [Twitter](https://twitter.com/yunusserhat) | [LinkedIn](https://www.linkedin.com/in/yunusserhat)
""")
if page == "Home":
st.write("Welcome to the Geolocation Predictor. Please select an action from the sidebar dropdown.")
elif page == "Images":
upload_images_page()
elif page == "Social Media":
social_media_page()
elif page == "Web Pages":
web_page_url_page()
def upload_images_page():
st.header("Image Upload for Geolocation Prediction")
uploaded_files = st.file_uploader("Choose images...", type=["jpg", "jpeg", "png"], accept_multiple_files=True)
if uploaded_files:
for idx, file in enumerate(uploaded_files, start=1):
with st.spinner(f"Processing {file.name}..."):
image = Image.open(file).convert('RGB')
st.image(image, caption=f'Uploaded Image: {file.name}', use_column_width=True)
model = load_geoloc_model()
if model:
result = predict_location(image, model) # Assume this function is defined elsewhere
if result:
gps_degrees, location_query, city_geojson, processing_time = result
st.write(
f"City: {location_query['name']}, Region: {location_query['admin1']}, Country: {location_query['cc']}")
if city_geojson:
display_map(city_geojson, gps_degrees)
st.write(f"Processing Time (seconds): {processing_time}")
def social_media_page():
st.header("Social Media Analyser")
social_media_url = st.text_input("Enter a social media URL to analyse:", key='social_media_url_input')
if social_media_url:
media_data = get_media(social_media_url)
if media_data:
full_text = media_data[0][1]
st.subheader("Full Text")
st.write(full_text)
most_used_location, most_common_locations = most_frequent_locations(full_text)
st.subheader("Most Frequent Location")
st.write(most_used_location)
for idx, (media_url, _) in enumerate(media_data, start=1):
st.subheader(f"Image {idx}")
response = requests.get(media_url)
if response.status_code == 200:
image = Image.open(BytesIO(response.content)).convert('RGB')
st.image(image, caption=f'Image from URL: {media_url}', use_column_width=True)
model = load_geoloc_model()
if model:
result = predict_location(image, model)
if result:
gps_degrees, location_query, city_geojson, processing_time = result
location_name = f"{location_query['name']}, {location_query['admin1']}, {location_query['cc']}"
st.write(
f"City: {location_query['name']}, Region: {location_query['admin1']}, Country: {location_query['cc']}")
if city_geojson:
display_map(city_geojson, gps_degrees)
st.write(f"Processing Time (seconds): {processing_time}")
# Check for match and notify
if check_location_match(location_query, most_common_locations):
st.success(
f"The predicted location {location_name} matches one of the most frequently mentioned locations!")
else:
st.error(f"Failed to fetch image at URL {media_url}: HTTP {response.status_code}")
def web_page_url_page():
st.header("Web Page Analyser")
web_page_url = st.text_input("Enter a web page URL to scrape:", key='web_page_url_input')
if web_page_url:
text, images = scrape_webpage(web_page_url)
if text:
st.subheader("Extracted Text First 500 Characters:")
st.write(text[:500])
most_used_location, most_common_locations = most_frequent_locations(text)
st.subheader("Most Frequent Location")
st.write(most_used_location)
if images:
selected_image_url = st.selectbox("Select an image to predict location:", images)
if selected_image_url:
response = requests.get(selected_image_url)
if response.status_code == 200:
image = Image.open(BytesIO(response.content)).convert('RGB')
st.image(image, caption=f'Selected Image from URL: {selected_image_url}', use_column_width=True)
model = load_geoloc_model()
if model:
result = predict_location(image, model)
if result:
gps_degrees, location_query, city_geojson, processing_time = result
location_name = f"{location_query['name']}, {location_query['admin1']}, {location_query['cc']}"
st.write(
f"City: {location_query['name']}, Region: {location_query['admin1']}, Country: {location_query['cc']}")
if city_geojson:
display_map(city_geojson, gps_degrees)
st.write(f"Processing Time (seconds): {processing_time}")
# Check for match and notify
if check_location_match(location_query, most_common_locations):
st.success(
f"The predicted location {location_name} matches one of the most frequently mentioned locations!")
if __name__ == '__main__':
main()