OmniGenMe / OmniGen /pipeline.py
sudemai's picture
Upload 81 files
55d914b verified
raw
history blame
11.6 kB
import os
import inspect
from typing import Any, Callable, Dict, List, Optional, Union
from PIL import Image
import numpy as np
import torch
from huggingface_hub import snapshot_download
from peft import LoraConfig, PeftModel
from diffusers.models import AutoencoderKL
from diffusers.utils import (
USE_PEFT_BACKEND,
is_torch_xla_available,
logging,
replace_example_docstring,
scale_lora_layers,
unscale_lora_layers,
)
from safetensors.torch import load_file
from OmniGen import OmniGen, OmniGenProcessor, OmniGenScheduler
import gc # For clearing unused objects
logger = logging.get_logger(__name__)
EXAMPLE_DOC_STRING = """
Examples:
```py
>>> from OmniGen import OmniGenPipeline
>>> pipe = FluxControlNetPipeline.from_pretrained(
... base_model
... )
>>> prompt = "A woman holds a bouquet of flowers and faces the camera"
>>> image = pipe(
... prompt,
... guidance_scale=3.0,
... num_inference_steps=50,
... ).images[0]
>>> image.save("t2i.png")
```
"""
class OmniGenPipeline:
def __init__(
self,
vae: AutoencoderKL,
model: OmniGen,
processor: OmniGenProcessor,
):
self.vae = vae
self.model = model
self.processor = processor
self.device = torch.device('cuda:0' if torch.cuda.is_available() else 'cpu')
self.model.to(self.device)
self.model.eval()
self.vae.to(self.device)
@classmethod
def from_pretrained(cls, model_name, vae_path: str=None, Quantization: bool=False):
if not os.path.exists(model_name) or (not os.path.exists(os.path.join(model_name, 'model.safetensors')) and model_name == "Shitao/OmniGen-v1"):
logger.info("Model not found, downloading...")
cache_folder = os.getenv('HF_HUB_CACHE')
model_name = snapshot_download(repo_id=model_name,
cache_dir=cache_folder,
ignore_patterns=['flax_model.msgpack', 'rust_model.ot', 'tf_model.h5', 'model.pt'])
logger.info(f"Downloaded model to {model_name}")
# Pass Quantization parameter to OmniGen's from_pretrained
model = OmniGen.from_pretrained(model_name, quantize=Quantization)
processor = OmniGenProcessor.from_pretrained(model_name)
if os.path.exists(os.path.join(model_name, "vae")):
vae = AutoencoderKL.from_pretrained(os.path.join(model_name, "vae"))
elif vae_path is not None:
vae = AutoencoderKL.from_pretrained(vae_path)
else:
logger.info(f"No VAE found in {model_name}, downloading stabilityai/sdxl-vae from HF")
vae = AutoencoderKL.from_pretrained("stabilityai/sdxl-vae")
return cls(vae, model, processor)
def merge_lora(self, lora_path: str):
model = PeftModel.from_pretrained(self.model, lora_path)
model.merge_and_unload()
self.model = model
def to(self, device: Union[str, torch.device]):
if isinstance(device, str):
device = torch.device(device)
self.model.to(device)
self.vae.to(device)
def vae_encode(self, x, dtype):
if self.vae.config.shift_factor is not None:
x = self.vae.encode(x).latent_dist.sample()
x = (x - self.vae.config.shift_factor) * self.vae.config.scaling_factor
else:
x = self.vae.encode(x).latent_dist.sample().mul_(self.vae.config.scaling_factor)
x = x.to(dtype)
return x
def move_to_device(self, data):
if isinstance(data, list):
return [x.to(self.device) for x in data]
return data.to(self.device)
@torch.no_grad()
@replace_example_docstring(EXAMPLE_DOC_STRING)
def __call__(
self,
prompt: Union[str, List[str]],
input_images: Union[List[str], List[List[str]]] = None,
height: int = 1024,
width: int = 1024,
num_inference_steps: int = 50,
guidance_scale: float = 3,
use_img_guidance: bool = True,
img_guidance_scale: float = 1.6,
separate_cfg_infer: bool = False,
use_kv_cache: bool = True,
dtype: torch.dtype = torch.bfloat16,
seed: int = None,
Quantization: bool = False,
):
r"""
Function invoked when calling the pipeline for generation.
Args:
prompt (`str` or `List[str]`):
The prompt or prompts to guide the image generation.
input_images (`List[str]` or `List[List[str]]`, *optional*):
The list of input images. We will replace the "<|image_i|>" in prompt with the 1-th image in list.
height (`int`, *optional*, defaults to 1024):
The height in pixels of the generated image. The number must be a multiple of 16.
width (`int`, *optional*, defaults to 1024):
The width in pixels of the generated image. The number must be a multiple of 16.
num_inference_steps (`int`, *optional*, defaults to 50):
The number of denoising steps. More denoising steps usually lead to a higher quality image at the expense of slower inference.
guidance_scale (`float`, *optional*, defaults to 4.0):
Guidance scale as defined in [Classifier-Free Diffusion Guidance](https://arxiv.org/abs/2207.12598).
`guidance_scale` is defined as `w` of equation 2. of [Imagen
Paper](https://arxiv.org/pdf/2205.11487.pdf). Guidance scale is enabled by setting `guidance_scale >
1`. Higher guidance scale encourages to generate images that are closely linked to the text `prompt`,
usually at the expense of lower image quality.
use_img_guidance (`bool`, *optional*, defaults to True):
Defined as equation 3 in [Instrucpix2pix](https://arxiv.org/pdf/2211.09800).
img_guidance_scale (`float`, *optional*, defaults to 1.6):
Defined as equation 3 in [Instrucpix2pix](https://arxiv.org/pdf/2211.09800).
separate_cfg_infer (`bool`, *optional*, defaults to False):
Perform inference on images with different guidance separately; this can save memory when generating images of large size at the expense of slower inference.
use_kv_cache (`bool`, *optional*, defaults to True): enable kv cache to speed up the inference
generator (`torch.Generator` or `List[torch.Generator]`, *optional*):
One or a list of [torch generator(s)](https://pytorch.org/docs/stable/generated/torch.Generator.html)
to make generation deterministic.
Examples:
Returns:
A list with the generated images.
"""
assert height%16 == 0 and width%16 == 0
if separate_cfg_infer:
use_kv_cache = False
# raise "Currently, don't support both use_kv_cache and separate_cfg_infer"
if input_images is None:
use_img_guidance = False
if isinstance(prompt, str):
prompt = [prompt]
input_images = [input_images] if input_images is not None else None
input_data = self.processor(prompt, input_images, height=height, width=width, use_img_cfg=use_img_guidance, separate_cfg_input=separate_cfg_infer)
num_prompt = len(prompt)
num_cfg = 2 if use_img_guidance else 1
latent_size_h, latent_size_w = height // 8, width // 8
if seed is not None:
generator = torch.Generator(device=self.device).manual_seed(seed)
else:
generator = None
latents = torch.randn(num_prompt, 4, latent_size_h, latent_size_w, device=self.device, generator=generator)
latents = torch.cat([latents] * (1 + num_cfg), 0).to(dtype)
# Load VAE into VRAM (GPU) in bfloat16
self.vae.to(self.device, dtype=torch.bfloat16)
input_img_latents = []
if separate_cfg_infer:
for temp_pixel_values in input_data['input_pixel_values']:
temp_input_latents = []
for img in temp_pixel_values:
img = self.vae_encode(img.to(self.device, dtype=torch.bfloat16), dtype)
temp_input_latents.append(img)
input_img_latents.append(temp_input_latents)
else:
for img in input_data['input_pixel_values']:
img = self.vae_encode(img.to(self.device, dtype=torch.bfloat16), dtype)
input_img_latents.append(img)
model_kwargs = dict(input_ids=self.move_to_device(input_data['input_ids']),
input_img_latents=input_img_latents,
input_image_sizes=input_data['input_image_sizes'],
attention_mask=self.move_to_device(input_data["attention_mask"]),
position_ids=self.move_to_device(input_data["position_ids"]),
cfg_scale=guidance_scale,
img_cfg_scale=img_guidance_scale,
use_img_cfg=use_img_guidance,
use_kv_cache=use_kv_cache)
#unlode vae to cpu
self.vae.to('cpu')
torch.cuda.empty_cache() # Clear VRAM
gc.collect() # Run garbage collection to free system RAM
if separate_cfg_infer:
func = self.model.forward_with_separate_cfg
else:
func = self.model.forward_with_cfg
#move main model to gpu
self.model.to(self.device, dtype=dtype)
scheduler = OmniGenScheduler(num_steps=num_inference_steps)
samples = scheduler(latents, func, model_kwargs, use_kv_cache=use_kv_cache)
samples = samples.chunk((1 + num_cfg), dim=0)[0]
if self.vae.config.shift_factor is not None:
samples = samples / self.vae.config.scaling_factor + self.vae.config.shift_factor
else:
samples = samples / self.vae.config.scaling_factor
#unlode main model to cpu
self.model.to('cpu')
torch.cuda.empty_cache() # Clear VRAM
gc.collect() # Run garbage collection to free system RAM
# Move samples to GPU and ensure they are in bfloat16 (for the VAE)
samples = samples.to(self.device, dtype=torch.bfloat16)
# Load VAE into VRAM (GPU) in bfloat16
self.vae.to(self.device, dtype=torch.bfloat16)
# Decode the samples using the VAE
samples = self.vae.decode(samples).sample
#unlode vae to cpu
self.vae.to('cpu')
torch.cuda.empty_cache() # Clear VRAM
gc.collect() # Run garbage collection to free system RAM
# Convert samples back to float32 for further processing
samples = samples.to(torch.float32)
# Convert samples to uint8 for final image output
output_samples = (samples * 0.5 + 0.5).clamp(0, 1) * 255
output_samples = output_samples.permute(0, 2, 3, 1).to("cpu", dtype=torch.uint8).numpy()
# Create output images
output_images = []
for i, sample in enumerate(output_samples):
output_images.append(Image.fromarray(sample))
# Return the generated images
return output_images