VADER / Core /aesthetic_scorer.py
QinOwen
add-vader-videocrafter
824b515
raw
history blame
1.5 kB
# Based on https://github.com/christophschuhmann/improved-aesthetic-predictor/blob/fe88a163f4661b4ddabba0751ff645e2e620746e/simple_inference.py
# import ipdb
# st = ipdb.set_trace
from importlib_resources import files
import torch
import torch.nn as nn
import numpy as np
from transformers import CLIPModel, CLIPProcessor
from PIL import Image
ASSETS_PATH = files("assets")
# ASSETS_PATH = "assets"
class MLPDiff(nn.Module):
def __init__(self):
super().__init__()
self.layers = nn.Sequential(
nn.Linear(768, 1024),
nn.Dropout(0.2),
nn.Linear(1024, 128),
nn.Dropout(0.2),
nn.Linear(128, 64),
nn.Dropout(0.1),
nn.Linear(64, 16),
nn.Linear(16, 1),
)
def forward(self, embed):
return self.layers(embed)
class AestheticScorerDiff(torch.nn.Module):
def __init__(self, dtype):
super().__init__()
self.clip = CLIPModel.from_pretrained("openai/clip-vit-large-patch14")
self.mlp = MLPDiff()
state_dict = torch.load(ASSETS_PATH.joinpath("sac+logos+ava1-l14-linearMSE.pth"))
self.mlp.load_state_dict(state_dict)
self.dtype = dtype
self.eval()
def __call__(self, images):
device = next(self.parameters()).device
embed = self.clip.get_image_features(pixel_values=images)
embed = embed / torch.linalg.vector_norm(embed, dim=-1, keepdim=True)
return self.mlp(embed).squeeze(1)