LiheYoung commited on
Commit
9829def
1 Parent(s): 9ebc835

Add Github repository content

Browse files
Files changed (1) hide show
  1. README_Github.md +136 -0
README_Github.md ADDED
@@ -0,0 +1,136 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ <div align="center">
2
+ <h1>Depth Anything V2</h1>
3
+
4
+ [**Lihe Yang**](https://liheyoung.github.io/)<sup>1</sup> · [**Bingyi Kang**](https://bingykang.github.io/)<sup>2&dagger;</sup> · [**Zilong Huang**](http://speedinghzl.github.io/)<sup>2</sup>
5
+ <br>
6
+ [**Zhen Zhao**](http://zhaozhen.me/) · [**Xiaogang Xu**](https://xiaogang00.github.io/) · [**Jiashi Feng**](https://sites.google.com/site/jshfeng/)<sup>2</sup> · [**Hengshuang Zhao**](https://hszhao.github.io/)<sup>1*</sup>
7
+
8
+ <sup>1</sup>HKU&emsp;&emsp;&emsp;<sup>2</sup>TikTok
9
+ <br>
10
+ &dagger;project lead&emsp;*corresponding author
11
+
12
+ <a href="https://arxiv.org/abs/2406.09414"><img src='https://img.shields.io/badge/arXiv-Depth Anything V2-red' alt='Paper PDF'></a>
13
+ <a href='https://depth-anything-v2.github.io'><img src='https://img.shields.io/badge/Project_Page-Depth Anything V2-green' alt='Project Page'></a>
14
+ <a href='https://huggingface.co/spaces/depth-anything/Depth-Anything-V2'><img src='https://img.shields.io/badge/%F0%9F%A4%97%20Hugging%20Face-Spaces-blue'></a>
15
+ <a href='https://huggingface.co/datasets/depth-anything/DA-2K'><img src='https://img.shields.io/badge/Benchmark-DA--2K-yellow' alt='Benchmark'></a>
16
+ </div>
17
+
18
+ This work presents Depth Anything V2. It significantly outperforms [V1](https://github.com/LiheYoung/Depth-Anything) in fine-grained details and robustness. Compared with SD-based models, it enjoys faster inference speed, fewer parameters, and higher depth accuracy.
19
+
20
+ ![teaser](assets/teaser.png)
21
+
22
+ ## News
23
+
24
+ - **2024-06-14:** Paper, project page, code, models, demo, and benchmark are all released.
25
+
26
+
27
+ ## Pre-trained Models
28
+
29
+ We provide **four models** of varying scales for robust relative depth estimation:
30
+
31
+ | Model | Params | Checkpoint |
32
+ |:-|-:|:-:|
33
+ | Depth-Anything-V2-Small | 24.8M | [Download](https://huggingface.co/depth-anything/Depth-Anything-V2-Small/resolve/main/depth_anything_v2_vits.pth?download=true) |
34
+ | Depth-Anything-V2-Base | 97.5M | [Download](https://huggingface.co/depth-anything/Depth-Anything-V2-Base/resolve/main/depth_anything_v2_vitb.pth?download=true) |
35
+ | Depth-Anything-V2-Large | 335.3M | [Download](https://huggingface.co/depth-anything/Depth-Anything-V2-Large/resolve/main/depth_anything_v2_vitl.pth?download=true) |
36
+ | Depth-Anything-V2-Giant | 1.3B | Coming soon |
37
+
38
+
39
+ ### Code snippet to use our models
40
+ ```python
41
+ import cv2
42
+ import torch
43
+
44
+ from depth_anything_v2.dpt import DepthAnythingV2
45
+
46
+ # take depth-anything-v2-large as an example
47
+ model = DepthAnythingV2(encoder='vitl', features=256, out_channels=[256, 512, 1024, 1024])
48
+ model.load_state_dict(torch.load('checkpoints/depth_anything_v2_vitl.pth', map_location='cpu'))
49
+ model.eval()
50
+
51
+ raw_img = cv2.imread('your/image/path')
52
+ depth = model.infer_image(raw_img) # HxW raw depth map
53
+ ```
54
+
55
+ ## Usage
56
+
57
+ ### Installation
58
+
59
+ ```bash
60
+ git clone https://github.com/DepthAnything/Depth-Anything-V2
61
+ cd Depth-Anything-V2
62
+ pip install -r requirements.txt
63
+ ```
64
+
65
+ ### Running
66
+
67
+ ```bash
68
+ python run.py --encoder <vits | vitb | vitl | vitg> --img-path <path> --outdir <outdir> [--input-size <size>] [--pred-only] [--grayscale]
69
+ ```
70
+ Options:
71
+ - `--img-path`: You can either 1) point it to an image directory storing all interested images, 2) point it to a single image, or 3) point it to a text file storing all image paths.
72
+ - `--input-size` (optional): By default, we use input size `518` for model inference. **You can increase the size for even more fine-grained results.**
73
+ - `--pred-only` (optional): Only save the predicted depth map, without raw image.
74
+ - `--grayscale` (optional): Save the grayscale depth map, without applying color palette.
75
+
76
+ For example:
77
+ ```bash
78
+ python run.py --encoder vitl --img-path assets/examples --outdir depth_vis
79
+ ```
80
+
81
+ **If you want to use Depth Anything V2 on videos:**
82
+
83
+ ```bash
84
+ python run_video.py --encoder vitl --video-path assets/examples_video --outdir video_depth_vis
85
+ ```
86
+
87
+ *Please note that our larger model has better temporal consistency on videos.*
88
+
89
+
90
+ ### Gradio demo
91
+
92
+ To use our gradio demo locally:
93
+
94
+ ```bash
95
+ python app.py
96
+ ```
97
+
98
+ You can also try our [online demo](https://huggingface.co/spaces/Depth-Anything/Depth-Anything-V2).
99
+
100
+ **Note:** Compared to V1, we have made a minor modification to the DINOv2-DPT architecture (originating from this [issue](https://github.com/LiheYoung/Depth-Anything/issues/81)). In V1, we *unintentionally* used features from the last four layers of DINOv2 for decoding. In V2, we use [intermediate features](https://github.com/DepthAnything/Depth-Anything-V2/blob/2cbc36a8ce2cec41d38ee51153f112e87c8e42d8/depth_anything_v2/dpt.py#L164-L169) instead. Although this modification did not improve details or accuracy, we decided to follow this common practice.
101
+
102
+
103
+
104
+ ## Fine-tuned to Metric Depth Estimation
105
+
106
+ Please refer to [metric depth estimation](./metric_depth).
107
+
108
+
109
+ ## DA-2K Evaluation Benchmark
110
+
111
+ Please refer to [DA-2K benchmark](./DA-2K.md).
112
+
113
+ ## LICENSE
114
+
115
+ Depth-Anything-V2-Small model is under the Apache-2.0 license. Depth-Anything-V2-Base/Large/Giant models are under the CC-BY-NC-4.0 license.
116
+
117
+
118
+ ## Citation
119
+
120
+ If you find this project useful, please consider citing:
121
+
122
+ ```bibtex
123
+ @article{depth_anything_v2,
124
+ title={Depth Anything V2},
125
+ author={Yang, Lihe and Kang, Bingyi and Huang, Zilong and Zhao, Zhen and Xu, Xiaogang and Feng, Jiashi and Zhao, Hengshuang},
126
+ journal={arXiv:2406.09414},
127
+ year={2024}
128
+ }
129
+
130
+ @inproceedings{depth_anything_v1,
131
+ title={Depth Anything: Unleashing the Power of Large-Scale Unlabeled Data},
132
+ author={Yang, Lihe and Kang, Bingyi and Huang, Zilong and Xu, Xiaogang and Feng, Jiashi and Zhao, Hengshuang},
133
+ booktitle={CVPR},
134
+ year={2024}
135
+ }
136
+ ```