zh_core_web_lg / README.md
osanseviero's picture
Update spaCy pipeline
7dfbadd
|
raw
history blame
3.69 kB
---
tags:
- spacy
- token-classification
language:
- zh
license: MIT
model-index:
- name: zh_core_web_lg
results:
- tasks:
name: NER
type: token-classification
metrics:
- name: Precision
type: precision
value: 0.7358998362
- name: Recall
type: recall
value: 0.6910989011
- name: F Score
type: f_score
value: 0.7127961011
- tasks:
name: POS
type: token-classification
metrics:
- name: Accuracy
type: accuracy
value: 0.9037457747
- tasks:
name: SENTER
type: token-classification
metrics:
- name: Precision
type: precision
value: 0.7896445968
- name: Recall
type: recall
value: 0.7286499084
- name: F Score
type: f_score
value: 0.7579220779
- tasks:
name: UNLABELED_DEPENDENCIES
type: token-classification
metrics:
- name: Accuracy
type: accuracy
value: 0.7069146954
- tasks:
name: LABELED_DEPENDENCIES
type: token-classification
metrics:
- name: Accuracy
type: accuracy
value: 0.7069146954
---
### Details: https://spacy.io/models/zh#zh_core_web_lg
Chinese pipeline optimized for CPU. Components: tok2vec, tagger, parser, senter, ner, attribute_ruler.
| Feature | Description |
| --- | --- |
| **Name** | `zh_core_web_lg` |
| **Version** | `3.1.0` |
| **spaCy** | `>=3.1.0,<3.2.0` |
| **Default Pipeline** | `tok2vec`, `tagger`, `parser`, `attribute_ruler`, `ner` |
| **Components** | `tok2vec`, `tagger`, `parser`, `senter`, `attribute_ruler`, `ner` |
| **Vectors** | 500000 keys, 500000 unique vectors (300 dimensions) |
| **Sources** | [OntoNotes 5](https://catalog.ldc.upenn.edu/LDC2013T19) (Ralph Weischedel, Martha Palmer, Mitchell Marcus, Eduard Hovy, Sameer Pradhan, Lance Ramshaw, Nianwen Xue, Ann Taylor, Jeff Kaufman, Michelle Franchini, Mohammed El-Bachouti, Robert Belvin, Ann Houston)<br />[CoreNLP Universal Dependencies Converter](https://nlp.stanford.edu/software/stanford-dependencies.html) (Stanford NLP Group)<br />[Explosion fastText Vectors (cbow, OSCAR Common Crawl + Wikipedia)](https://spacy.io) (Explosion) |
| **License** | `MIT` |
| **Author** | [Explosion](https://explosion.ai) |
### Label Scheme
<details>
<summary>View label scheme (101 labels for 4 components)</summary>
| Component | Labels |
| --- | --- |
| **`tagger`** | `AD`, `AS`, `BA`, `CC`, `CD`, `CS`, `DEC`, `DEG`, `DER`, `DEV`, `DT`, `ETC`, `FW`, `IJ`, `INF`, `JJ`, `LB`, `LC`, `M`, `MSP`, `NN`, `NR`, `NT`, `OD`, `ON`, `P`, `PN`, `PU`, `SB`, `SP`, `URL`, `VA`, `VC`, `VE`, `VV`, `X` |
| **`parser`** | `ROOT`, `acl`, `advcl:loc`, `advmod`, `advmod:dvp`, `advmod:loc`, `advmod:rcomp`, `amod`, `amod:ordmod`, `appos`, `aux:asp`, `aux:ba`, `aux:modal`, `aux:prtmod`, `auxpass`, `case`, `cc`, `ccomp`, `compound:nn`, `compound:vc`, `conj`, `cop`, `dep`, `det`, `discourse`, `dobj`, `etc`, `mark`, `mark:clf`, `name`, `neg`, `nmod`, `nmod:assmod`, `nmod:poss`, `nmod:prep`, `nmod:range`, `nmod:tmod`, `nmod:topic`, `nsubj`, `nsubj:xsubj`, `nsubjpass`, `nummod`, `parataxis:prnmod`, `punct`, `xcomp` |
| **`senter`** | `I`, `S` |
| **`ner`** | `CARDINAL`, `DATE`, `EVENT`, `FAC`, `GPE`, `LANGUAGE`, `LAW`, `LOC`, `MONEY`, `NORP`, `ORDINAL`, `ORG`, `PERCENT`, `PERSON`, `PRODUCT`, `QUANTITY`, `TIME`, `WORK_OF_ART` |
</details>
### Accuracy
| Type | Score |
| --- | --- |
| `TOKEN_ACC` | 97.88 |
| `TAG_ACC` | 90.37 |
| `DEP_UAS` | 70.69 |
| `DEP_LAS` | 65.55 |
| `ENTS_P` | 73.59 |
| `ENTS_R` | 69.11 |
| `ENTS_F` | 71.28 |
| `SENTS_P` | 78.96 |
| `SENTS_R` | 72.86 |
| `SENTS_F` | 75.79 |