sepformer_rescuespeech / hyperparams.yaml
sangeet2020's picture
minor fixes
037093b
raw
history blame
4.78 kB
# Generated 2023-06-20 from:
# /netscratch/sagar/thesis/speechbrain/recipes/RescueSpeech/Enhancement/fine-tuning/hparams/sepformer_16k.yaml
# yamllint disable
# ################################
# Model: SepFormer for source separation
# https://arxiv.org/abs/2010.13154
#
# Author: Sangeet Sagar 2022
# Dataset : RescueSpeech
# ################################
# Basic parameters
# Seed needs to be set at top of yaml, before objects with parameters are made
seed: 8201
__set_seed: !apply:torch.manual_seed [8201]
experiment_name: sepformer-enhancement
output_folder: results/sepformer-enhancement/8201
train_log: results/sepformer-enhancement/8201/train_log.txt
save_folder: results/sepformer-enhancement/8201/save
# Dataset prep parameters
data_folder: dataset/audio_sythesis/Task_enhancement/ # !PLACEHOLDER
csv_dir: csv_files
train_csv: csv_files/train.csv
valid_csv: csv_files/dev.csv
test_csv: csv_files/test.csv
skip_prep: false
sample_rate: 16000
task: enhance
dereverberate: false
shuffle_train_data: true
# Pretrained models
pretrained_model_path:
/netscratch/sagar/thesis/speechbrain/recipes/RescueSpeech/pre-trained/sepformer_dns_16k # !PLACEHOLDER # sepformer_dns_16k model
# Basic parameters
use_tensorboard: false
tensorboard_logs: results/sepformer-enhancement/8201/logs/
# Experiment params
auto_mix_prec: true # Set it to True for mixed precision
test_only: false
num_spks: 1
noprogressbar: false
save_audio: true # Save estimated sources on disk
downsample: false
n_audio_to_save: 500
# Training parameters
N_epochs: 150
batch_size: 1
batch_size_test: 1
lr: 0.00015
clip_grad_norm: 5
loss_upper_lim: 999999 # this is the upper limit for an acceptable loss
# if True, the training sequences are cut to a specified length
limit_training_signal_len: false
# this is the length of sequences if we choose to limit
# the signal length of training sequences
training_signal_len: 32000
ckpt_interval_minutes: 60
# Parameters for data augmentation
use_wavedrop: false
use_speedperturb: true
use_rand_shift: false
min_shift: -8000
max_shift: 8000
speedperturb: !new:speechbrain.lobes.augment.TimeDomainSpecAugment
perturb_prob: 1.0
drop_freq_prob: 0.0
drop_chunk_prob: 0.0
sample_rate: 16000
speeds: [95, 100, 105]
wavedrop: !new:speechbrain.lobes.augment.TimeDomainSpecAugment
perturb_prob: 0.0
drop_freq_prob: 1.0
drop_chunk_prob: 1.0
sample_rate: 16000
# loss thresholding -- this thresholds the training loss
threshold_byloss: true
threshold: -30
# Encoder parameters
N_encoder_out: 256
out_channels: 256
kernel_size: 16
kernel_stride: 8
# Dataloader options
dataloader_opts:
batch_size: 1
num_workers: 3
dataloader_opts_valid:
batch_size: 1
num_workers: 3
dataloader_opts_test:
batch_size: 1
num_workers: 3
# Specifying the network
Encoder: &id003 !new:speechbrain.lobes.models.dual_path.Encoder
kernel_size: 16
out_channels: 256
SBtfintra: &id001 !new:speechbrain.lobes.models.dual_path.SBTransformerBlock
num_layers: 8
d_model: 256
nhead: 8
d_ffn: 1024
dropout: 0
use_positional_encoding: true
norm_before: true
SBtfinter: &id002 !new:speechbrain.lobes.models.dual_path.SBTransformerBlock
num_layers: 8
d_model: 256
nhead: 8
d_ffn: 1024
dropout: 0
use_positional_encoding: true
norm_before: true
MaskNet: &id005 !new:speechbrain.lobes.models.dual_path.Dual_Path_Model
num_spks: 1
in_channels: 256
out_channels: 256
num_layers: 2
K: 250
intra_model: *id001
inter_model: *id002
norm: ln
linear_layer_after_inter_intra: false
skip_around_intra: true
Decoder: &id004 !new:speechbrain.lobes.models.dual_path.Decoder
in_channels: 256
out_channels: 1
kernel_size: 16
stride: 8
bias: false
optimizer: !name:torch.optim.Adam
lr: 0.00015
weight_decay: 0
loss: !name:speechbrain.nnet.losses.get_si_snr_with_pitwrapper
lr_scheduler: &id007 !new:speechbrain.nnet.schedulers.ReduceLROnPlateau
factor: 0.5
patience: 2
dont_halve_until_epoch: 85
epoch_counter: &id006 !new:speechbrain.utils.epoch_loop.EpochCounter
limit: 150
modules:
encoder: *id003
decoder: *id004
masknet: *id005
save_all_checkpoints: false
checkpointer: !new:speechbrain.utils.checkpoints.Checkpointer
checkpoints_dir: results/sepformer-enhancement/8201/save
recoverables:
encoder: *id003
decoder: *id004
masknet: *id005
counter: *id006
lr_scheduler: *id007
train_logger: !new:speechbrain.utils.train_logger.FileTrainLogger
save_file: results/sepformer-enhancement/8201/train_log.txt
## Uncomment if you wish to fine-tune a pre-trained model.
pretrainer: !new:speechbrain.utils.parameter_transfer.Pretrainer
loadables:
encoder: !ref <Encoder>
masknet: !ref <MaskNet>
decoder: !ref <Decoder>