license: mit | |
datasets: | |
- yahma/alpaca-cleaned | |
duplicated_from: tloen/alpaca-lora-7b | |
This repo contains a low-rank adapter for LLaMA-7b | |
fit on the [Stanford Alpaca](https://github.com/tatsu-lab/stanford_alpaca) dataset. | |
This version of the weights was trained with the following hyperparameters: | |
- Epochs: 10 (load from best epoch) | |
- Batch size: 128 | |
- Cutoff length: 512 | |
- Learning rate: 3e-4 | |
- Lora _r_: 16 | |
- Lora target modules: q_proj, k_proj, v_proj, o_proj | |
That is: | |
``` | |
python finetune.py \ | |
--base_model='decapoda-research/llama-7b-hf' \ | |
--num_epochs=10 \ | |
--cutoff_len=512 \ | |
--group_by_length \ | |
--output_dir='./lora-alpaca-512-qkvo' \ | |
--lora_target_modules='[q_proj,k_proj,v_proj,o_proj]' \ | |
--lora_r=16 \ | |
--micro_batch_size=8 | |
``` | |
Instructions for running it can be found at https://github.com/tloen/alpaca-lora. |