layoutlm-funsd / README.md
sreejith8100's picture
End of training
3b3a72c
|
raw
history blame
7.83 kB
metadata
license: cc-by-nc-sa-4.0
base_model: microsoft/layoutlmv2-base-uncased
tags:
  - generated_from_trainer
model-index:
  - name: layoutlm-funsd
    results: []

layoutlm-funsd

This model is a fine-tuned version of microsoft/layoutlmv2-base-uncased on the None dataset. It achieves the following results on the evaluation set:

  • Loss: 0.3805
  • Ame Precision: 1.0
  • Ame Recall: 1.0
  • Ame F1: 1.0
  • Ame Number: 19
  • Andom number Precision: 1.0
  • Andom number Recall: 1.0
  • Andom number F1: 1.0
  • Andom number Number: 19
  • Ather Name Precision: 1.0
  • Ather Name Recall: 1.0
  • Ather Name F1: 1.0
  • Ather Name Number: 19
  • Lace Of Birth Precision: 1.0
  • Lace Of Birth Recall: 1.0
  • Lace Of Birth F1: 1.0
  • Lace Of Birth Number: 5
  • Other Name Precision: 1.0
  • Other Name Recall: 1.0
  • Other Name F1: 1.0
  • Other Name Number: 19
  • Overall Precision: 1.0
  • Overall Recall: 1.0
  • Overall F1: 1.0
  • Overall Accuracy: 1.0

Model description

More information needed

Intended uses & limitations

More information needed

Training and evaluation data

More information needed

Training procedure

Training hyperparameters

The following hyperparameters were used during training:

  • learning_rate: 3e-05
  • train_batch_size: 16
  • eval_batch_size: 8
  • seed: 42
  • optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
  • lr_scheduler_type: linear
  • num_epochs: 10

Training results

Training Loss Epoch Step Validation Loss Ame Precision Ame Recall Ame F1 Ame Number Andom number Precision Andom number Recall Andom number F1 Andom number Number Ather Name Precision Ather Name Recall Ather Name F1 Ather Name Number Lace Of Birth Precision Lace Of Birth Recall Lace Of Birth F1 Lace Of Birth Number Other Name Precision Other Name Recall Other Name F1 Other Name Number Overall Precision Overall Recall Overall F1 Overall Accuracy
1.2231 1.0 41 0.8784 0.3220 1.0 0.4872 19 1.0 1.0 1.0 19 0.0 0.0 0.0 19 0.0 0.0 0.0 5 0.0 0.0 0.0 19 0.4872 0.4691 0.4780 0.9126
0.8256 2.0 82 0.6942 1.0 1.0 1.0 19 1.0 1.0 1.0 19 1.0 1.0 1.0 19 1.0 1.0 1.0 5 1.0 1.0 1.0 19 1.0 1.0 1.0 1.0
0.6803 3.0 123 0.5889 1.0 1.0 1.0 19 1.0 1.0 1.0 19 1.0 1.0 1.0 19 1.0 1.0 1.0 5 1.0 1.0 1.0 19 1.0 1.0 1.0 1.0
0.5863 4.0 164 0.5189 1.0 1.0 1.0 19 1.0 1.0 1.0 19 1.0 1.0 1.0 19 1.0 1.0 1.0 5 1.0 1.0 1.0 19 1.0 1.0 1.0 1.0
0.5261 5.0 205 0.4713 1.0 1.0 1.0 19 1.0 1.0 1.0 19 1.0 1.0 1.0 19 1.0 1.0 1.0 5 1.0 1.0 1.0 19 1.0 1.0 1.0 1.0
0.4835 6.0 246 0.4369 1.0 1.0 1.0 19 1.0 1.0 1.0 19 1.0 1.0 1.0 19 1.0 1.0 1.0 5 1.0 1.0 1.0 19 1.0 1.0 1.0 1.0
0.4519 7.0 287 0.4111 1.0 1.0 1.0 19 1.0 1.0 1.0 19 1.0 1.0 1.0 19 1.0 1.0 1.0 5 1.0 1.0 1.0 19 1.0 1.0 1.0 1.0
0.4287 8.0 328 0.3938 1.0 1.0 1.0 19 1.0 1.0 1.0 19 1.0 1.0 1.0 19 1.0 1.0 1.0 5 1.0 1.0 1.0 19 1.0 1.0 1.0 1.0
0.4142 9.0 369 0.3837 1.0 1.0 1.0 19 1.0 1.0 1.0 19 1.0 1.0 1.0 19 1.0 1.0 1.0 5 1.0 1.0 1.0 19 1.0 1.0 1.0 1.0
0.4079 10.0 410 0.3805 1.0 1.0 1.0 19 1.0 1.0 1.0 19 1.0 1.0 1.0 19 1.0 1.0 1.0 5 1.0 1.0 1.0 19 1.0 1.0 1.0 1.0

Framework versions

  • Transformers 4.34.0
  • Pytorch 2.0.1+cu118
  • Datasets 2.14.5
  • Tokenizers 0.14.1