metadata
license: cc-by-nc-sa-4.0
base_model: microsoft/layoutlmv2-base-uncased
tags:
- generated_from_trainer
model-index:
- name: layoutlm-funsd
results: []
layoutlm-funsd
This model is a fine-tuned version of microsoft/layoutlmv2-base-uncased on the None dataset. It achieves the following results on the evaluation set:
- Loss: 0.3805
- Ame Precision: 1.0
- Ame Recall: 1.0
- Ame F1: 1.0
- Ame Number: 19
- Andom number Precision: 1.0
- Andom number Recall: 1.0
- Andom number F1: 1.0
- Andom number Number: 19
- Ather Name Precision: 1.0
- Ather Name Recall: 1.0
- Ather Name F1: 1.0
- Ather Name Number: 19
- Lace Of Birth Precision: 1.0
- Lace Of Birth Recall: 1.0
- Lace Of Birth F1: 1.0
- Lace Of Birth Number: 5
- Other Name Precision: 1.0
- Other Name Recall: 1.0
- Other Name F1: 1.0
- Other Name Number: 19
- Overall Precision: 1.0
- Overall Recall: 1.0
- Overall F1: 1.0
- Overall Accuracy: 1.0
Model description
More information needed
Intended uses & limitations
More information needed
Training and evaluation data
More information needed
Training procedure
Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 3e-05
- train_batch_size: 16
- eval_batch_size: 8
- seed: 42
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- num_epochs: 10
Training results
Training Loss | Epoch | Step | Validation Loss | Ame Precision | Ame Recall | Ame F1 | Ame Number | Andom number Precision | Andom number Recall | Andom number F1 | Andom number Number | Ather Name Precision | Ather Name Recall | Ather Name F1 | Ather Name Number | Lace Of Birth Precision | Lace Of Birth Recall | Lace Of Birth F1 | Lace Of Birth Number | Other Name Precision | Other Name Recall | Other Name F1 | Other Name Number | Overall Precision | Overall Recall | Overall F1 | Overall Accuracy |
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
1.2231 | 1.0 | 41 | 0.8784 | 0.3220 | 1.0 | 0.4872 | 19 | 1.0 | 1.0 | 1.0 | 19 | 0.0 | 0.0 | 0.0 | 19 | 0.0 | 0.0 | 0.0 | 5 | 0.0 | 0.0 | 0.0 | 19 | 0.4872 | 0.4691 | 0.4780 | 0.9126 |
0.8256 | 2.0 | 82 | 0.6942 | 1.0 | 1.0 | 1.0 | 19 | 1.0 | 1.0 | 1.0 | 19 | 1.0 | 1.0 | 1.0 | 19 | 1.0 | 1.0 | 1.0 | 5 | 1.0 | 1.0 | 1.0 | 19 | 1.0 | 1.0 | 1.0 | 1.0 |
0.6803 | 3.0 | 123 | 0.5889 | 1.0 | 1.0 | 1.0 | 19 | 1.0 | 1.0 | 1.0 | 19 | 1.0 | 1.0 | 1.0 | 19 | 1.0 | 1.0 | 1.0 | 5 | 1.0 | 1.0 | 1.0 | 19 | 1.0 | 1.0 | 1.0 | 1.0 |
0.5863 | 4.0 | 164 | 0.5189 | 1.0 | 1.0 | 1.0 | 19 | 1.0 | 1.0 | 1.0 | 19 | 1.0 | 1.0 | 1.0 | 19 | 1.0 | 1.0 | 1.0 | 5 | 1.0 | 1.0 | 1.0 | 19 | 1.0 | 1.0 | 1.0 | 1.0 |
0.5261 | 5.0 | 205 | 0.4713 | 1.0 | 1.0 | 1.0 | 19 | 1.0 | 1.0 | 1.0 | 19 | 1.0 | 1.0 | 1.0 | 19 | 1.0 | 1.0 | 1.0 | 5 | 1.0 | 1.0 | 1.0 | 19 | 1.0 | 1.0 | 1.0 | 1.0 |
0.4835 | 6.0 | 246 | 0.4369 | 1.0 | 1.0 | 1.0 | 19 | 1.0 | 1.0 | 1.0 | 19 | 1.0 | 1.0 | 1.0 | 19 | 1.0 | 1.0 | 1.0 | 5 | 1.0 | 1.0 | 1.0 | 19 | 1.0 | 1.0 | 1.0 | 1.0 |
0.4519 | 7.0 | 287 | 0.4111 | 1.0 | 1.0 | 1.0 | 19 | 1.0 | 1.0 | 1.0 | 19 | 1.0 | 1.0 | 1.0 | 19 | 1.0 | 1.0 | 1.0 | 5 | 1.0 | 1.0 | 1.0 | 19 | 1.0 | 1.0 | 1.0 | 1.0 |
0.4287 | 8.0 | 328 | 0.3938 | 1.0 | 1.0 | 1.0 | 19 | 1.0 | 1.0 | 1.0 | 19 | 1.0 | 1.0 | 1.0 | 19 | 1.0 | 1.0 | 1.0 | 5 | 1.0 | 1.0 | 1.0 | 19 | 1.0 | 1.0 | 1.0 | 1.0 |
0.4142 | 9.0 | 369 | 0.3837 | 1.0 | 1.0 | 1.0 | 19 | 1.0 | 1.0 | 1.0 | 19 | 1.0 | 1.0 | 1.0 | 19 | 1.0 | 1.0 | 1.0 | 5 | 1.0 | 1.0 | 1.0 | 19 | 1.0 | 1.0 | 1.0 | 1.0 |
0.4079 | 10.0 | 410 | 0.3805 | 1.0 | 1.0 | 1.0 | 19 | 1.0 | 1.0 | 1.0 | 19 | 1.0 | 1.0 | 1.0 | 19 | 1.0 | 1.0 | 1.0 | 5 | 1.0 | 1.0 | 1.0 | 19 | 1.0 | 1.0 | 1.0 | 1.0 |
Framework versions
- Transformers 4.34.0
- Pytorch 2.0.1+cu118
- Datasets 2.14.5
- Tokenizers 0.14.1