layoutlm-funsd / README.md
sreejith8100's picture
End of training
5ade54c
|
raw
history blame
2.41 kB
---
license: cc-by-nc-sa-4.0
base_model: microsoft/layoutlmv2-base-uncased
tags:
- generated_from_trainer
model-index:
- name: layoutlm-funsd
results: []
---
<!-- This model card has been generated automatically according to the information the Trainer had access to. You
should probably proofread and complete it, then remove this comment. -->
# layoutlm-funsd
This model is a fine-tuned version of [microsoft/layoutlmv2-base-uncased](https://huggingface.co/microsoft/layoutlmv2-base-uncased) on the None dataset.
It achieves the following results on the evaluation set:
- Loss: 0.0875
- Nswer Precision: 1.0
- Nswer Recall: 1.0
- Nswer F1: 1.0
- Nswer Number: 82
- Uestion Precision: 1.0
- Uestion Recall: 1.0
- Uestion F1: 1.0
- Uestion Number: 82
- Overall Precision: 1.0
- Overall Recall: 1.0
- Overall F1: 1.0
- Overall Accuracy: 1.0
## Model description
More information needed
## Intended uses & limitations
More information needed
## Training and evaluation data
More information needed
## Training procedure
### Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 3e-05
- train_batch_size: 16
- eval_batch_size: 8
- seed: 42
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- num_epochs: 2
### Training results
| Training Loss | Epoch | Step | Validation Loss | Nswer Precision | Nswer Recall | Nswer F1 | Nswer Number | Uestion Precision | Uestion Recall | Uestion F1 | Uestion Number | Overall Precision | Overall Recall | Overall F1 | Overall Accuracy |
|:-------------:|:-----:|:----:|:---------------:|:---------------:|:------------:|:--------:|:------------:|:-----------------:|:--------------:|:----------:|:--------------:|:-----------------:|:--------------:|:----------:|:----------------:|
| 0.256 | 1.0 | 41 | 0.0998 | 1.0 | 1.0 | 1.0 | 82 | 1.0 | 1.0 | 1.0 | 82 | 1.0 | 1.0 | 1.0 | 1.0 |
| 0.1026 | 2.0 | 82 | 0.0875 | 1.0 | 1.0 | 1.0 | 82 | 1.0 | 1.0 | 1.0 | 82 | 1.0 | 1.0 | 1.0 | 1.0 |
### Framework versions
- Transformers 4.34.0
- Pytorch 2.0.1+cu118
- Datasets 2.14.5
- Tokenizers 0.14.1