SentenceTransformer based on intfloat/multilingual-e5-small
This is a sentence-transformers model finetuned from intfloat/multilingual-e5-small. It maps sentences & paragraphs to a 384-dimensional dense vector space and can be used for semantic textual similarity, semantic search, paraphrase mining, text classification, clustering, and more.
Model Details
Model Description
- Model Type: Sentence Transformer
- Base model: intfloat/multilingual-e5-small
- Maximum Sequence Length: 512 tokens
- Output Dimensionality: 384 tokens
- Similarity Function: Cosine Similarity
Model Sources
- Documentation: Sentence Transformers Documentation
- Repository: Sentence Transformers on GitHub
- Hugging Face: Sentence Transformers on Hugging Face
Full Model Architecture
SentenceTransformer(
(0): Transformer({'max_seq_length': 512, 'do_lower_case': False}) with Transformer model: BertModel
(1): Pooling({'word_embedding_dimension': 384, 'pooling_mode_cls_token': False, 'pooling_mode_mean_tokens': True, 'pooling_mode_max_tokens': False, 'pooling_mode_mean_sqrt_len_tokens': False, 'pooling_mode_weightedmean_tokens': False, 'pooling_mode_lasttoken': False, 'include_prompt': True})
(2): Normalize()
)
Usage
Direct Usage (Sentence Transformers)
First install the Sentence Transformers library:
pip install -U sentence-transformers
Then you can load this model and run inference.
from sentence_transformers import SentenceTransformer
# Download from the 🤗 Hub
model = SentenceTransformer("srikarvar/fine_tuned_model_1")
# Run inference
sentences = [
'How is the weather today?',
'What is the weather like today?',
'Who was the first female Prime Minister of the UK?',
]
embeddings = model.encode(sentences)
print(embeddings.shape)
# [3, 384]
# Get the similarity scores for the embeddings
similarities = model.similarity(embeddings, embeddings)
print(similarities.shape)
# [3, 3]
Evaluation
Metrics
Binary Classification
- Dataset:
pair-class-dev
- Evaluated with
BinaryClassificationEvaluator
Metric | Value |
---|---|
cosine_accuracy | 0.9389 |
cosine_accuracy_threshold | 0.7887 |
cosine_f1 | 0.9412 |
cosine_f1_threshold | 0.7887 |
cosine_precision | 0.9573 |
cosine_recall | 0.9256 |
cosine_ap | 0.974 |
dot_accuracy | 0.9389 |
dot_accuracy_threshold | 0.7887 |
dot_f1 | 0.9412 |
dot_f1_threshold | 0.7887 |
dot_precision | 0.9573 |
dot_recall | 0.9256 |
dot_ap | 0.974 |
manhattan_accuracy | 0.9389 |
manhattan_accuracy_threshold | 10.1324 |
manhattan_f1 | 0.9412 |
manhattan_f1_threshold | 10.1324 |
manhattan_precision | 0.9573 |
manhattan_recall | 0.9256 |
manhattan_ap | 0.9729 |
euclidean_accuracy | 0.9389 |
euclidean_accuracy_threshold | 0.6501 |
euclidean_f1 | 0.9412 |
euclidean_f1_threshold | 0.6501 |
euclidean_precision | 0.9573 |
euclidean_recall | 0.9256 |
euclidean_ap | 0.974 |
max_accuracy | 0.9389 |
max_accuracy_threshold | 10.1324 |
max_f1 | 0.9412 |
max_f1_threshold | 10.1324 |
max_precision | 0.9573 |
max_recall | 0.9256 |
max_ap | 0.974 |
Binary Classification
- Dataset:
pair-class-test
- Evaluated with
BinaryClassificationEvaluator
Metric | Value |
---|---|
cosine_accuracy | 0.9389 |
cosine_accuracy_threshold | 0.8208 |
cosine_f1 | 0.9421 |
cosine_f1_threshold | 0.8208 |
cosine_precision | 0.9421 |
cosine_recall | 0.9421 |
cosine_ap | 0.9732 |
dot_accuracy | 0.9389 |
dot_accuracy_threshold | 0.8208 |
dot_f1 | 0.9421 |
dot_f1_threshold | 0.8208 |
dot_precision | 0.9421 |
dot_recall | 0.9421 |
dot_ap | 0.9732 |
manhattan_accuracy | 0.9345 |
manhattan_accuracy_threshold | 9.3871 |
manhattan_f1 | 0.9383 |
manhattan_f1_threshold | 9.5161 |
manhattan_precision | 0.9344 |
manhattan_recall | 0.9421 |
manhattan_ap | 0.9721 |
euclidean_accuracy | 0.9389 |
euclidean_accuracy_threshold | 0.5987 |
euclidean_f1 | 0.9421 |
euclidean_f1_threshold | 0.5987 |
euclidean_precision | 0.9421 |
euclidean_recall | 0.9421 |
euclidean_ap | 0.9732 |
max_accuracy | 0.9389 |
max_accuracy_threshold | 9.3871 |
max_f1 | 0.9421 |
max_f1_threshold | 9.5161 |
max_precision | 0.9421 |
max_recall | 0.9421 |
max_ap | 0.9732 |
Training Details
Training Dataset
Unnamed Dataset
- Size: 916 training samples
- Columns:
label
,sentence2
, andsentence1
- Approximate statistics based on the first 1000 samples:
label sentence2 sentence1 type int string string details - 0: ~49.56%
- 1: ~50.44%
- min: 4 tokens
- mean: 10.32 tokens
- max: 22 tokens
- min: 6 tokens
- mean: 10.92 tokens
- max: 22 tokens
- Samples:
label sentence2 sentence1 1
What are the potential side effects of this medication?
What are the side effects of this drug?
0
How to fix a torn pocket?
How to fix a broken zipper?
0
How to make a chocolate chip cookie dough?
How to bake a chocolate chip cookie?
- Loss:
OnlineContrastiveLoss
Evaluation Dataset
Unnamed Dataset
- Size: 229 evaluation samples
- Columns:
label
,sentence2
, andsentence1
- Approximate statistics based on the first 1000 samples:
label sentence2 sentence1 type int string string details - 0: ~47.16%
- 1: ~52.84%
- min: 4 tokens
- mean: 9.95 tokens
- max: 16 tokens
- min: 6 tokens
- mean: 10.81 tokens
- max: 20 tokens
- Samples:
label sentence2 sentence1 0
What methods are used to measure a nation's GDP?
How is the GDP of a country measured?
0
What is the currency of Japan?
What is the currency of China?
1
Steps to cultivate tomatoes at home
How to grow tomatoes in a garden?
- Loss:
OnlineContrastiveLoss
Training Hyperparameters
Non-Default Hyperparameters
eval_strategy
: epochper_device_train_batch_size
: 32per_device_eval_batch_size
: 32gradient_accumulation_steps
: 2weight_decay
: 0.01num_train_epochs
: 8warmup_ratio
: 0.1load_best_model_at_end
: Trueoptim
: adamw_torch_fusedbatch_sampler
: no_duplicates
All Hyperparameters
Click to expand
overwrite_output_dir
: Falsedo_predict
: Falseeval_strategy
: epochprediction_loss_only
: Trueper_device_train_batch_size
: 32per_device_eval_batch_size
: 32per_gpu_train_batch_size
: Noneper_gpu_eval_batch_size
: Nonegradient_accumulation_steps
: 2eval_accumulation_steps
: Nonelearning_rate
: 5e-05weight_decay
: 0.01adam_beta1
: 0.9adam_beta2
: 0.999adam_epsilon
: 1e-08max_grad_norm
: 1.0num_train_epochs
: 8max_steps
: -1lr_scheduler_type
: linearlr_scheduler_kwargs
: {}warmup_ratio
: 0.1warmup_steps
: 0log_level
: passivelog_level_replica
: warninglog_on_each_node
: Truelogging_nan_inf_filter
: Truesave_safetensors
: Truesave_on_each_node
: Falsesave_only_model
: Falserestore_callback_states_from_checkpoint
: Falseno_cuda
: Falseuse_cpu
: Falseuse_mps_device
: Falseseed
: 42data_seed
: Nonejit_mode_eval
: Falseuse_ipex
: Falsebf16
: Falsefp16
: Falsefp16_opt_level
: O1half_precision_backend
: autobf16_full_eval
: Falsefp16_full_eval
: Falsetf32
: Nonelocal_rank
: 0ddp_backend
: Nonetpu_num_cores
: Nonetpu_metrics_debug
: Falsedebug
: []dataloader_drop_last
: Falsedataloader_num_workers
: 0dataloader_prefetch_factor
: Nonepast_index
: -1disable_tqdm
: Falseremove_unused_columns
: Truelabel_names
: Noneload_best_model_at_end
: Trueignore_data_skip
: Falsefsdp
: []fsdp_min_num_params
: 0fsdp_config
: {'min_num_params': 0, 'xla': False, 'xla_fsdp_v2': False, 'xla_fsdp_grad_ckpt': False}fsdp_transformer_layer_cls_to_wrap
: Noneaccelerator_config
: {'split_batches': False, 'dispatch_batches': None, 'even_batches': True, 'use_seedable_sampler': True, 'non_blocking': False, 'gradient_accumulation_kwargs': None}deepspeed
: Nonelabel_smoothing_factor
: 0.0optim
: adamw_torch_fusedoptim_args
: Noneadafactor
: Falsegroup_by_length
: Falselength_column_name
: lengthddp_find_unused_parameters
: Noneddp_bucket_cap_mb
: Noneddp_broadcast_buffers
: Falsedataloader_pin_memory
: Truedataloader_persistent_workers
: Falseskip_memory_metrics
: Trueuse_legacy_prediction_loop
: Falsepush_to_hub
: Falseresume_from_checkpoint
: Nonehub_model_id
: Nonehub_strategy
: every_savehub_private_repo
: Falsehub_always_push
: Falsegradient_checkpointing
: Falsegradient_checkpointing_kwargs
: Noneinclude_inputs_for_metrics
: Falseeval_do_concat_batches
: Truefp16_backend
: autopush_to_hub_model_id
: Nonepush_to_hub_organization
: Nonemp_parameters
:auto_find_batch_size
: Falsefull_determinism
: Falsetorchdynamo
: Noneray_scope
: lastddp_timeout
: 1800torch_compile
: Falsetorch_compile_backend
: Nonetorch_compile_mode
: Nonedispatch_batches
: Nonesplit_batches
: Noneinclude_tokens_per_second
: Falseinclude_num_input_tokens_seen
: Falseneftune_noise_alpha
: Noneoptim_target_modules
: Nonebatch_eval_metrics
: Falsebatch_sampler
: no_duplicatesmulti_dataset_batch_sampler
: proportional
Training Logs
Epoch | Step | Training Loss | loss | pair-class-dev_max_ap | pair-class-test_max_ap |
---|---|---|---|---|---|
0 | 0 | - | - | 0.7130 | - |
0.6897 | 10 | 3.0972 | - | - | - |
1.0345 | 15 | - | 0.8033 | 0.9272 | - |
1.3448 | 20 | 1.0451 | - | - | - |
2.0345 | 30 | 0.5786 | 0.4910 | 0.9680 | - |
2.6897 | 40 | 0.2996 | - | - | - |
3.0345 | 45 | - | 0.4487 | 0.9731 | - |
3.3448 | 50 | 0.0901 | - | - | - |
4.0345 | 60 | 0.067 | 0.4115 | 0.9732 | - |
4.6897 | 70 | 0.0729 | - | - | - |
5.0345 | 75 | - | 0.4543 | 0.9727 | - |
5.3448 | 80 | 0.0453 | - | - | - |
6.0345 | 90 | 0.0637 | 0.4249 | 0.9736 | - |
6.6897 | 100 | 0.0388 | - | - | - |
7.0345 | 105 | - | 0.4223 | 0.9740 | - |
7.3448 | 110 | 0.0382 | - | - | - |
7.4828 | 112 | - | 0.4226 | 0.9740 | 0.9732 |
- The bold row denotes the saved checkpoint.
Framework Versions
- Python: 3.10.12
- Sentence Transformers: 3.0.1
- Transformers: 4.41.2
- PyTorch: 2.1.2+cu121
- Accelerate: 0.32.1
- Datasets: 2.19.1
- Tokenizers: 0.19.1
Citation
BibTeX
Sentence Transformers
@inproceedings{reimers-2019-sentence-bert,
title = "Sentence-BERT: Sentence Embeddings using Siamese BERT-Networks",
author = "Reimers, Nils and Gurevych, Iryna",
booktitle = "Proceedings of the 2019 Conference on Empirical Methods in Natural Language Processing",
month = "11",
year = "2019",
publisher = "Association for Computational Linguistics",
url = "https://arxiv.org/abs/1908.10084",
}
- Downloads last month
- 0
This model does not have enough activity to be deployed to Inference API (serverless) yet. Increase its social
visibility and check back later, or deploy to Inference Endpoints (dedicated)
instead.
Model tree for srikarvar/fine_tuned_model_1
Base model
intfloat/multilingual-e5-smallEvaluation results
- Cosine Accuracy on pair class devself-reported0.939
- Cosine Accuracy Threshold on pair class devself-reported0.789
- Cosine F1 on pair class devself-reported0.941
- Cosine F1 Threshold on pair class devself-reported0.789
- Cosine Precision on pair class devself-reported0.957
- Cosine Recall on pair class devself-reported0.926
- Cosine Ap on pair class devself-reported0.974
- Dot Accuracy on pair class devself-reported0.939
- Dot Accuracy Threshold on pair class devself-reported0.789
- Dot F1 on pair class devself-reported0.941