metadata
base_model: intfloat/multilingual-e5-small
datasets: []
language: []
library_name: sentence-transformers
metrics:
- cosine_accuracy
- cosine_accuracy_threshold
- cosine_f1
- cosine_f1_threshold
- cosine_precision
- cosine_recall
- cosine_ap
- dot_accuracy
- dot_accuracy_threshold
- dot_f1
- dot_f1_threshold
- dot_precision
- dot_recall
- dot_ap
- manhattan_accuracy
- manhattan_accuracy_threshold
- manhattan_f1
- manhattan_f1_threshold
- manhattan_precision
- manhattan_recall
- manhattan_ap
- euclidean_accuracy
- euclidean_accuracy_threshold
- euclidean_f1
- euclidean_f1_threshold
- euclidean_precision
- euclidean_recall
- euclidean_ap
- max_accuracy
- max_accuracy_threshold
- max_f1
- max_f1_threshold
- max_precision
- max_recall
- max_ap
pipeline_tag: sentence-similarity
tags:
- sentence-transformers
- sentence-similarity
- feature-extraction
- generated_from_trainer
- dataset_size:1030
- loss:ContrastiveLoss
widget:
- source_sentence: First climber to reach the summit of Everest
sentences:
- How to create a podcast?
- How to cook sushi rice?
- Who was the first person to climb Mount Everest?
- source_sentence: What methods are used to measure a nation's GDP?
sentences:
- How is the GDP of a country measured?
- How do I sign out of my email account?
- How does digital marketing differ from traditional marketing?
- source_sentence: Steps to sign up for a new account
sentences:
- How to grow tomatoes in a garden?
- What is the process for creating a new account?
- What is the GDP of India?
- source_sentence: Name of the tallest building in New York
sentences:
- What are the symptoms of anxiety?
- What is the tallest building in New York?
- Who was the first female Prime Minister of the UK?
- source_sentence: How do you make a paper boat?
sentences:
- What are the benefits of using solar energy?
- Where can I buy a new phone?
- How do you make a paper airplane?
model-index:
- name: SentenceTransformer based on intfloat/multilingual-e5-small
results:
- task:
type: binary-classification
name: Binary Classification
dataset:
name: pair class dev
type: pair-class-dev
metrics:
- type: cosine_accuracy
value: 0.9478260869565217
name: Cosine Accuracy
- type: cosine_accuracy_threshold
value: 0.6633322238922119
name: Cosine Accuracy Threshold
- type: cosine_f1
value: 0.9558823529411764
name: Cosine F1
- type: cosine_f1_threshold
value: 0.6633322238922119
name: Cosine F1 Threshold
- type: cosine_precision
value: 0.9154929577464789
name: Cosine Precision
- type: cosine_recall
value: 1
name: Cosine Recall
- type: cosine_ap
value: 0.9777355464218691
name: Cosine Ap
- type: dot_accuracy
value: 0.9478260869565217
name: Dot Accuracy
- type: dot_accuracy_threshold
value: 0.6633322238922119
name: Dot Accuracy Threshold
- type: dot_f1
value: 0.9558823529411764
name: Dot F1
- type: dot_f1_threshold
value: 0.6633322238922119
name: Dot F1 Threshold
- type: dot_precision
value: 0.9154929577464789
name: Dot Precision
- type: dot_recall
value: 1
name: Dot Recall
- type: dot_ap
value: 0.9777355464218691
name: Dot Ap
- type: manhattan_accuracy
value: 0.9391304347826087
name: Manhattan Accuracy
- type: manhattan_accuracy_threshold
value: 9.603110313415527
name: Manhattan Accuracy Threshold
- type: manhattan_f1
value: 0.9489051094890512
name: Manhattan F1
- type: manhattan_f1_threshold
value: 12.660685539245605
name: Manhattan F1 Threshold
- type: manhattan_precision
value: 0.9027777777777778
name: Manhattan Precision
- type: manhattan_recall
value: 1
name: Manhattan Recall
- type: manhattan_ap
value: 0.975614621691024
name: Manhattan Ap
- type: euclidean_accuracy
value: 0.9478260869565217
name: Euclidean Accuracy
- type: euclidean_accuracy_threshold
value: 0.8205450773239136
name: Euclidean Accuracy Threshold
- type: euclidean_f1
value: 0.9558823529411764
name: Euclidean F1
- type: euclidean_f1_threshold
value: 0.8205450773239136
name: Euclidean F1 Threshold
- type: euclidean_precision
value: 0.9154929577464789
name: Euclidean Precision
- type: euclidean_recall
value: 1
name: Euclidean Recall
- type: euclidean_ap
value: 0.9777355464218691
name: Euclidean Ap
- type: max_accuracy
value: 0.9478260869565217
name: Max Accuracy
- type: max_accuracy_threshold
value: 9.603110313415527
name: Max Accuracy Threshold
- type: max_f1
value: 0.9558823529411764
name: Max F1
- type: max_f1_threshold
value: 12.660685539245605
name: Max F1 Threshold
- type: max_precision
value: 0.9154929577464789
name: Max Precision
- type: max_recall
value: 1
name: Max Recall
- type: max_ap
value: 0.9777355464218691
name: Max Ap
- task:
type: binary-classification
name: Binary Classification
dataset:
name: pair class test
type: pair-class-test
metrics:
- type: cosine_accuracy
value: 0.9478260869565217
name: Cosine Accuracy
- type: cosine_accuracy_threshold
value: 0.7873066663742065
name: Cosine Accuracy Threshold
- type: cosine_f1
value: 0.9558823529411764
name: Cosine F1
- type: cosine_f1_threshold
value: 0.6542514562606812
name: Cosine F1 Threshold
- type: cosine_precision
value: 0.9154929577464789
name: Cosine Precision
- type: cosine_recall
value: 1
name: Cosine Recall
- type: cosine_ap
value: 0.9776721343444097
name: Cosine Ap
- type: dot_accuracy
value: 0.9478260869565217
name: Dot Accuracy
- type: dot_accuracy_threshold
value: 0.7873067259788513
name: Dot Accuracy Threshold
- type: dot_f1
value: 0.9558823529411764
name: Dot F1
- type: dot_f1_threshold
value: 0.6542515158653259
name: Dot F1 Threshold
- type: dot_precision
value: 0.9154929577464789
name: Dot Precision
- type: dot_recall
value: 1
name: Dot Recall
- type: dot_ap
value: 0.9776721343444097
name: Dot Ap
- type: manhattan_accuracy
value: 0.9478260869565217
name: Manhattan Accuracy
- type: manhattan_accuracy_threshold
value: 11.123205184936523
name: Manhattan Accuracy Threshold
- type: manhattan_f1
value: 0.9558823529411764
name: Manhattan F1
- type: manhattan_f1_threshold
value: 12.862250328063965
name: Manhattan F1 Threshold
- type: manhattan_precision
value: 0.9154929577464789
name: Manhattan Precision
- type: manhattan_recall
value: 1
name: Manhattan Recall
- type: manhattan_ap
value: 0.9774497925836063
name: Manhattan Ap
- type: euclidean_accuracy
value: 0.9478260869565217
name: Euclidean Accuracy
- type: euclidean_accuracy_threshold
value: 0.652188777923584
name: Euclidean Accuracy Threshold
- type: euclidean_f1
value: 0.9558823529411764
name: Euclidean F1
- type: euclidean_f1_threshold
value: 0.8315430879592896
name: Euclidean F1 Threshold
- type: euclidean_precision
value: 0.9154929577464789
name: Euclidean Precision
- type: euclidean_recall
value: 1
name: Euclidean Recall
- type: euclidean_ap
value: 0.9776721343444097
name: Euclidean Ap
- type: max_accuracy
value: 0.9478260869565217
name: Max Accuracy
- type: max_accuracy_threshold
value: 11.123205184936523
name: Max Accuracy Threshold
- type: max_f1
value: 0.9558823529411764
name: Max F1
- type: max_f1_threshold
value: 12.862250328063965
name: Max F1 Threshold
- type: max_precision
value: 0.9154929577464789
name: Max Precision
- type: max_recall
value: 1
name: Max Recall
- type: max_ap
value: 0.9776721343444097
name: Max Ap
SentenceTransformer based on intfloat/multilingual-e5-small
This is a sentence-transformers model finetuned from intfloat/multilingual-e5-small. It maps sentences & paragraphs to a 384-dimensional dense vector space and can be used for semantic textual similarity, semantic search, paraphrase mining, text classification, clustering, and more.
Model Details
Model Description
- Model Type: Sentence Transformer
- Base model: intfloat/multilingual-e5-small
- Maximum Sequence Length: 512 tokens
- Output Dimensionality: 384 tokens
- Similarity Function: Cosine Similarity
Model Sources
- Documentation: Sentence Transformers Documentation
- Repository: Sentence Transformers on GitHub
- Hugging Face: Sentence Transformers on Hugging Face
Full Model Architecture
SentenceTransformer(
(0): Transformer({'max_seq_length': 512, 'do_lower_case': False}) with Transformer model: BertModel
(1): Pooling({'word_embedding_dimension': 384, 'pooling_mode_cls_token': False, 'pooling_mode_mean_tokens': True, 'pooling_mode_max_tokens': False, 'pooling_mode_mean_sqrt_len_tokens': False, 'pooling_mode_weightedmean_tokens': False, 'pooling_mode_lasttoken': False, 'include_prompt': True})
(2): Normalize()
)
Usage
Direct Usage (Sentence Transformers)
First install the Sentence Transformers library:
pip install -U sentence-transformers
Then you can load this model and run inference.
from sentence_transformers import SentenceTransformer
# Download from the 🤗 Hub
model = SentenceTransformer("srikarvar/fine_tuned_model_2")
# Run inference
sentences = [
'How do you make a paper boat?',
'How do you make a paper airplane?',
'What are the benefits of using solar energy?',
]
embeddings = model.encode(sentences)
print(embeddings.shape)
# [3, 384]
# Get the similarity scores for the embeddings
similarities = model.similarity(embeddings, embeddings)
print(similarities.shape)
# [3, 3]
Evaluation
Metrics
Binary Classification
- Dataset:
pair-class-dev
- Evaluated with
BinaryClassificationEvaluator
Metric | Value |
---|---|
cosine_accuracy | 0.9478 |
cosine_accuracy_threshold | 0.6633 |
cosine_f1 | 0.9559 |
cosine_f1_threshold | 0.6633 |
cosine_precision | 0.9155 |
cosine_recall | 1.0 |
cosine_ap | 0.9777 |
dot_accuracy | 0.9478 |
dot_accuracy_threshold | 0.6633 |
dot_f1 | 0.9559 |
dot_f1_threshold | 0.6633 |
dot_precision | 0.9155 |
dot_recall | 1.0 |
dot_ap | 0.9777 |
manhattan_accuracy | 0.9391 |
manhattan_accuracy_threshold | 9.6031 |
manhattan_f1 | 0.9489 |
manhattan_f1_threshold | 12.6607 |
manhattan_precision | 0.9028 |
manhattan_recall | 1.0 |
manhattan_ap | 0.9756 |
euclidean_accuracy | 0.9478 |
euclidean_accuracy_threshold | 0.8205 |
euclidean_f1 | 0.9559 |
euclidean_f1_threshold | 0.8205 |
euclidean_precision | 0.9155 |
euclidean_recall | 1.0 |
euclidean_ap | 0.9777 |
max_accuracy | 0.9478 |
max_accuracy_threshold | 9.6031 |
max_f1 | 0.9559 |
max_f1_threshold | 12.6607 |
max_precision | 0.9155 |
max_recall | 1.0 |
max_ap | 0.9777 |
Binary Classification
- Dataset:
pair-class-test
- Evaluated with
BinaryClassificationEvaluator
Metric | Value |
---|---|
cosine_accuracy | 0.9478 |
cosine_accuracy_threshold | 0.7873 |
cosine_f1 | 0.9559 |
cosine_f1_threshold | 0.6543 |
cosine_precision | 0.9155 |
cosine_recall | 1.0 |
cosine_ap | 0.9777 |
dot_accuracy | 0.9478 |
dot_accuracy_threshold | 0.7873 |
dot_f1 | 0.9559 |
dot_f1_threshold | 0.6543 |
dot_precision | 0.9155 |
dot_recall | 1.0 |
dot_ap | 0.9777 |
manhattan_accuracy | 0.9478 |
manhattan_accuracy_threshold | 11.1232 |
manhattan_f1 | 0.9559 |
manhattan_f1_threshold | 12.8623 |
manhattan_precision | 0.9155 |
manhattan_recall | 1.0 |
manhattan_ap | 0.9774 |
euclidean_accuracy | 0.9478 |
euclidean_accuracy_threshold | 0.6522 |
euclidean_f1 | 0.9559 |
euclidean_f1_threshold | 0.8315 |
euclidean_precision | 0.9155 |
euclidean_recall | 1.0 |
euclidean_ap | 0.9777 |
max_accuracy | 0.9478 |
max_accuracy_threshold | 11.1232 |
max_f1 | 0.9559 |
max_f1_threshold | 12.8623 |
max_precision | 0.9155 |
max_recall | 1.0 |
max_ap | 0.9777 |
Training Details
Training Dataset
Unnamed Dataset
- Size: 1,030 training samples
- Columns:
label
,sentence2
, andsentence1
- Approximate statistics based on the first 1000 samples:
label sentence2 sentence1 type int string string details - 0: ~49.60%
- 1: ~50.40%
- min: 4 tokens
- mean: 10.27 tokens
- max: 22 tokens
- min: 6 tokens
- mean: 10.9 tokens
- max: 22 tokens
- Samples:
label sentence2 sentence1 1
Speed of sound in air
What is the speed of sound?
1
World's most popular tourist destination
What is the most visited tourist attraction in the world?
1
How do I write a resume?
How do I create a resume?
- Loss:
ContrastiveLoss
with these parameters:{ "distance_metric": "SiameseDistanceMetric.COSINE_DISTANCE", "margin": 0.6, "size_average": true }
Evaluation Dataset
Unnamed Dataset
- Size: 115 evaluation samples
- Columns:
label
,sentence2
, andsentence1
- Approximate statistics based on the first 1000 samples:
label sentence2 sentence1 type int string string details - 0: ~43.48%
- 1: ~56.52%
- min: 5 tokens
- mean: 10.04 tokens
- max: 15 tokens
- min: 6 tokens
- mean: 10.81 tokens
- max: 20 tokens
- Samples:
label sentence2 sentence1 0
What methods are used to measure a nation's GDP?
How is the GDP of a country measured?
0
What is the currency of Japan?
What is the currency of China?
1
Steps to cultivate tomatoes at home
How to grow tomatoes in a garden?
- Loss:
ContrastiveLoss
with these parameters:{ "distance_metric": "SiameseDistanceMetric.COSINE_DISTANCE", "margin": 0.6, "size_average": true }
Training Hyperparameters
Non-Default Hyperparameters
eval_strategy
: epochper_device_train_batch_size
: 32per_device_eval_batch_size
: 32gradient_accumulation_steps
: 2weight_decay
: 0.01num_train_epochs
: 8lr_scheduler_type
: reduce_lr_on_plateauwarmup_ratio
: 0.1load_best_model_at_end
: Trueoptim
: adamw_torch_fusedbatch_sampler
: no_duplicates
All Hyperparameters
Click to expand
overwrite_output_dir
: Falsedo_predict
: Falseeval_strategy
: epochprediction_loss_only
: Trueper_device_train_batch_size
: 32per_device_eval_batch_size
: 32per_gpu_train_batch_size
: Noneper_gpu_eval_batch_size
: Nonegradient_accumulation_steps
: 2eval_accumulation_steps
: Nonelearning_rate
: 5e-05weight_decay
: 0.01adam_beta1
: 0.9adam_beta2
: 0.999adam_epsilon
: 1e-08max_grad_norm
: 1.0num_train_epochs
: 8max_steps
: -1lr_scheduler_type
: reduce_lr_on_plateaulr_scheduler_kwargs
: {}warmup_ratio
: 0.1warmup_steps
: 0log_level
: passivelog_level_replica
: warninglog_on_each_node
: Truelogging_nan_inf_filter
: Truesave_safetensors
: Truesave_on_each_node
: Falsesave_only_model
: Falserestore_callback_states_from_checkpoint
: Falseno_cuda
: Falseuse_cpu
: Falseuse_mps_device
: Falseseed
: 42data_seed
: Nonejit_mode_eval
: Falseuse_ipex
: Falsebf16
: Falsefp16
: Falsefp16_opt_level
: O1half_precision_backend
: autobf16_full_eval
: Falsefp16_full_eval
: Falsetf32
: Nonelocal_rank
: 0ddp_backend
: Nonetpu_num_cores
: Nonetpu_metrics_debug
: Falsedebug
: []dataloader_drop_last
: Falsedataloader_num_workers
: 0dataloader_prefetch_factor
: Nonepast_index
: -1disable_tqdm
: Falseremove_unused_columns
: Truelabel_names
: Noneload_best_model_at_end
: Trueignore_data_skip
: Falsefsdp
: []fsdp_min_num_params
: 0fsdp_config
: {'min_num_params': 0, 'xla': False, 'xla_fsdp_v2': False, 'xla_fsdp_grad_ckpt': False}fsdp_transformer_layer_cls_to_wrap
: Noneaccelerator_config
: {'split_batches': False, 'dispatch_batches': None, 'even_batches': True, 'use_seedable_sampler': True, 'non_blocking': False, 'gradient_accumulation_kwargs': None}deepspeed
: Nonelabel_smoothing_factor
: 0.0optim
: adamw_torch_fusedoptim_args
: Noneadafactor
: Falsegroup_by_length
: Falselength_column_name
: lengthddp_find_unused_parameters
: Noneddp_bucket_cap_mb
: Noneddp_broadcast_buffers
: Falsedataloader_pin_memory
: Truedataloader_persistent_workers
: Falseskip_memory_metrics
: Trueuse_legacy_prediction_loop
: Falsepush_to_hub
: Falseresume_from_checkpoint
: Nonehub_model_id
: Nonehub_strategy
: every_savehub_private_repo
: Falsehub_always_push
: Falsegradient_checkpointing
: Falsegradient_checkpointing_kwargs
: Noneinclude_inputs_for_metrics
: Falseeval_do_concat_batches
: Truefp16_backend
: autopush_to_hub_model_id
: Nonepush_to_hub_organization
: Nonemp_parameters
:auto_find_batch_size
: Falsefull_determinism
: Falsetorchdynamo
: Noneray_scope
: lastddp_timeout
: 1800torch_compile
: Falsetorch_compile_backend
: Nonetorch_compile_mode
: Nonedispatch_batches
: Nonesplit_batches
: Noneinclude_tokens_per_second
: Falseinclude_num_input_tokens_seen
: Falseneftune_noise_alpha
: Noneoptim_target_modules
: Nonebatch_eval_metrics
: Falsebatch_sampler
: no_duplicatesmulti_dataset_batch_sampler
: proportional
Training Logs
Epoch | Step | Training Loss | loss | pair-class-dev_max_ap | pair-class-test_max_ap |
---|---|---|---|---|---|
0 | 0 | - | - | 0.7625 | - |
0.6061 | 10 | 0.0417 | - | - | - |
0.9697 | 16 | - | 0.0119 | 0.9695 | - |
1.2121 | 20 | 0.0189 | - | - | - |
1.8182 | 30 | 0.0148 | - | - | - |
2.0 | 33 | - | 0.0102 | 0.9741 | - |
2.4242 | 40 | 0.0114 | - | - | - |
2.9697 | 49 | - | 0.0098 | 0.9752 | - |
3.0303 | 50 | 0.009 | - | - | - |
3.6364 | 60 | 0.008 | - | - | - |
4.0 | 66 | - | 0.0095 | 0.9778 | - |
4.2424 | 70 | 0.0065 | - | - | - |
4.8485 | 80 | 0.0056 | - | - | - |
4.9697 | 82 | - | 0.0092 | 0.9749 | - |
5.4545 | 90 | 0.0056 | - | - | - |
6.0 | 99 | - | 0.0088 | 0.9766 | - |
6.0606 | 100 | 0.0045 | - | - | - |
6.6667 | 110 | 0.0044 | - | - | - |
6.9697 | 115 | - | 0.0087 | 0.9777 | - |
7.2727 | 120 | 0.0038 | - | - | - |
7.7576 | 128 | - | 0.0090 | 0.9777 | 0.9777 |
- The bold row denotes the saved checkpoint.
Framework Versions
- Python: 3.10.12
- Sentence Transformers: 3.0.1
- Transformers: 4.41.2
- PyTorch: 2.1.2+cu121
- Accelerate: 0.32.1
- Datasets: 2.19.1
- Tokenizers: 0.19.1
Citation
BibTeX
Sentence Transformers
@inproceedings{reimers-2019-sentence-bert,
title = "Sentence-BERT: Sentence Embeddings using Siamese BERT-Networks",
author = "Reimers, Nils and Gurevych, Iryna",
booktitle = "Proceedings of the 2019 Conference on Empirical Methods in Natural Language Processing",
month = "11",
year = "2019",
publisher = "Association for Computational Linguistics",
url = "https://arxiv.org/abs/1908.10084",
}
ContrastiveLoss
@inproceedings{hadsell2006dimensionality,
author={Hadsell, R. and Chopra, S. and LeCun, Y.},
booktitle={2006 IEEE Computer Society Conference on Computer Vision and Pattern Recognition (CVPR'06)},
title={Dimensionality Reduction by Learning an Invariant Mapping},
year={2006},
volume={2},
number={},
pages={1735-1742},
doi={10.1109/CVPR.2006.100}
}