Edit model card

SentenceTransformer based on intfloat/multilingual-e5-small

This is a sentence-transformers model finetuned from intfloat/multilingual-e5-small. It maps sentences & paragraphs to a 384-dimensional dense vector space and can be used for semantic textual similarity, semantic search, paraphrase mining, text classification, clustering, and more.

Model Details

Model Description

  • Model Type: Sentence Transformer
  • Base model: intfloat/multilingual-e5-small
  • Maximum Sequence Length: 512 tokens
  • Output Dimensionality: 384 tokens
  • Similarity Function: Cosine Similarity

Model Sources

Full Model Architecture

SentenceTransformer(
  (0): Transformer({'max_seq_length': 512, 'do_lower_case': False}) with Transformer model: BertModel 
  (1): Pooling({'word_embedding_dimension': 384, 'pooling_mode_cls_token': False, 'pooling_mode_mean_tokens': True, 'pooling_mode_max_tokens': False, 'pooling_mode_mean_sqrt_len_tokens': False, 'pooling_mode_weightedmean_tokens': False, 'pooling_mode_lasttoken': False, 'include_prompt': True})
  (2): Normalize()
)

Usage

Direct Usage (Sentence Transformers)

First install the Sentence Transformers library:

pip install -U sentence-transformers

Then you can load this model and run inference.

from sentence_transformers import SentenceTransformer

# Download from the 🤗 Hub
model = SentenceTransformer("srikarvar/multilingual-e5-small-pairclass-2")
# Run inference
sentences = [
    'What is the boiling point of water at sea level?',
    'What is the melting point of ice at sea level?',
    'Can you recommend a good hotel nearby?',
]
embeddings = model.encode(sentences)
print(embeddings.shape)
# [3, 384]

# Get the similarity scores for the embeddings
similarities = model.similarity(embeddings, embeddings)
print(similarities.shape)
# [3, 3]

Evaluation

Metrics

Binary Classification

Metric Value
cosine_accuracy 0.9342
cosine_accuracy_threshold 0.7817
cosine_f1 0.9279
cosine_f1_threshold 0.7817
cosine_precision 0.9035
cosine_recall 0.9537
cosine_ap 0.9587
dot_accuracy 0.9342
dot_accuracy_threshold 0.7817
dot_f1 0.9279
dot_f1_threshold 0.7817
dot_precision 0.9035
dot_recall 0.9537
dot_ap 0.9587
manhattan_accuracy 0.9218
manhattan_accuracy_threshold 10.0315
manhattan_f1 0.9156
manhattan_f1_threshold 10.4594
manhattan_precision 0.8803
manhattan_recall 0.9537
manhattan_ap 0.957
euclidean_accuracy 0.9342
euclidean_accuracy_threshold 0.6608
euclidean_f1 0.9279
euclidean_f1_threshold 0.6608
euclidean_precision 0.9035
euclidean_recall 0.9537
euclidean_ap 0.9587
max_accuracy 0.9342
max_accuracy_threshold 10.0315
max_f1 0.9279
max_f1_threshold 10.4594
max_precision 0.9035
max_recall 0.9537
max_ap 0.9587

Binary Classification

Metric Value
cosine_accuracy 0.9342
cosine_accuracy_threshold 0.7817
cosine_f1 0.9279
cosine_f1_threshold 0.7817
cosine_precision 0.9035
cosine_recall 0.9537
cosine_ap 0.9587
dot_accuracy 0.9342
dot_accuracy_threshold 0.7817
dot_f1 0.9279
dot_f1_threshold 0.7817
dot_precision 0.9035
dot_recall 0.9537
dot_ap 0.9587
manhattan_accuracy 0.9218
manhattan_accuracy_threshold 10.0315
manhattan_f1 0.9156
manhattan_f1_threshold 10.4594
manhattan_precision 0.8803
manhattan_recall 0.9537
manhattan_ap 0.957
euclidean_accuracy 0.9342
euclidean_accuracy_threshold 0.6608
euclidean_f1 0.9279
euclidean_f1_threshold 0.6608
euclidean_precision 0.9035
euclidean_recall 0.9537
euclidean_ap 0.9587
max_accuracy 0.9342
max_accuracy_threshold 10.0315
max_f1 0.9279
max_f1_threshold 10.4594
max_precision 0.9035
max_recall 0.9537
max_ap 0.9587

Training Details

Training Dataset

Unnamed Dataset

  • Size: 971 training samples
  • Columns: label, sentence1, and sentence2
  • Approximate statistics based on the first 1000 samples:
    label sentence1 sentence2
    type int string string
    details
    • 0: ~48.61%
    • 1: ~51.39%
    • min: 6 tokens
    • mean: 10.82 tokens
    • max: 22 tokens
    • min: 4 tokens
    • mean: 10.12 tokens
    • max: 22 tokens
  • Samples:
    label sentence1 sentence2
    1 How many bones are in the human body? Total number of bones in an adult human body
    0 What is the largest lake in North America? What is the largest river in North America?
    0 What is the capital of New Zealand? What is the capital of Australia?
  • Loss: OnlineContrastiveLoss

Evaluation Dataset

Unnamed Dataset

  • Size: 243 evaluation samples
  • Columns: label, sentence1, and sentence2
  • Approximate statistics based on the first 1000 samples:
    label sentence1 sentence2
    type int string string
    details
    • 0: ~55.56%
    • 1: ~44.44%
    • min: 6 tokens
    • mean: 10.55 tokens
    • max: 22 tokens
    • min: 4 tokens
    • mean: 10.09 tokens
    • max: 20 tokens
  • Samples:
    label sentence1 sentence2
    1 What are the different types of renewable energy? What are the various forms of renewable energy?
    1 Who discovered gravity? Gravity discoverer
    0 Can you help me understand this report? Can you help me write this report?
  • Loss: OnlineContrastiveLoss

Training Hyperparameters

Non-Default Hyperparameters

  • eval_strategy: epoch
  • per_device_train_batch_size: 32
  • per_device_eval_batch_size: 32
  • gradient_accumulation_steps: 2
  • learning_rate: 3e-06
  • weight_decay: 0.01
  • num_train_epochs: 15
  • lr_scheduler_type: reduce_lr_on_plateau
  • warmup_ratio: 0.1
  • load_best_model_at_end: True
  • optim: adamw_torch_fused

All Hyperparameters

Click to expand
  • overwrite_output_dir: False
  • do_predict: False
  • eval_strategy: epoch
  • prediction_loss_only: True
  • per_device_train_batch_size: 32
  • per_device_eval_batch_size: 32
  • per_gpu_train_batch_size: None
  • per_gpu_eval_batch_size: None
  • gradient_accumulation_steps: 2
  • eval_accumulation_steps: None
  • learning_rate: 3e-06
  • weight_decay: 0.01
  • adam_beta1: 0.9
  • adam_beta2: 0.999
  • adam_epsilon: 1e-08
  • max_grad_norm: 1.0
  • num_train_epochs: 15
  • max_steps: -1
  • lr_scheduler_type: reduce_lr_on_plateau
  • lr_scheduler_kwargs: {}
  • warmup_ratio: 0.1
  • warmup_steps: 0
  • log_level: passive
  • log_level_replica: warning
  • log_on_each_node: True
  • logging_nan_inf_filter: True
  • save_safetensors: True
  • save_on_each_node: False
  • save_only_model: False
  • restore_callback_states_from_checkpoint: False
  • no_cuda: False
  • use_cpu: False
  • use_mps_device: False
  • seed: 42
  • data_seed: None
  • jit_mode_eval: False
  • use_ipex: False
  • bf16: False
  • fp16: False
  • fp16_opt_level: O1
  • half_precision_backend: auto
  • bf16_full_eval: False
  • fp16_full_eval: False
  • tf32: None
  • local_rank: 0
  • ddp_backend: None
  • tpu_num_cores: None
  • tpu_metrics_debug: False
  • debug: []
  • dataloader_drop_last: False
  • dataloader_num_workers: 0
  • dataloader_prefetch_factor: None
  • past_index: -1
  • disable_tqdm: False
  • remove_unused_columns: True
  • label_names: None
  • load_best_model_at_end: True
  • ignore_data_skip: False
  • fsdp: []
  • fsdp_min_num_params: 0
  • fsdp_config: {'min_num_params': 0, 'xla': False, 'xla_fsdp_v2': False, 'xla_fsdp_grad_ckpt': False}
  • fsdp_transformer_layer_cls_to_wrap: None
  • accelerator_config: {'split_batches': False, 'dispatch_batches': None, 'even_batches': True, 'use_seedable_sampler': True, 'non_blocking': False, 'gradient_accumulation_kwargs': None}
  • deepspeed: None
  • label_smoothing_factor: 0.0
  • optim: adamw_torch_fused
  • optim_args: None
  • adafactor: False
  • group_by_length: False
  • length_column_name: length
  • ddp_find_unused_parameters: None
  • ddp_bucket_cap_mb: None
  • ddp_broadcast_buffers: False
  • dataloader_pin_memory: True
  • dataloader_persistent_workers: False
  • skip_memory_metrics: True
  • use_legacy_prediction_loop: False
  • push_to_hub: False
  • resume_from_checkpoint: None
  • hub_model_id: None
  • hub_strategy: every_save
  • hub_private_repo: False
  • hub_always_push: False
  • gradient_checkpointing: False
  • gradient_checkpointing_kwargs: None
  • include_inputs_for_metrics: False
  • eval_do_concat_batches: True
  • fp16_backend: auto
  • push_to_hub_model_id: None
  • push_to_hub_organization: None
  • mp_parameters:
  • auto_find_batch_size: False
  • full_determinism: False
  • torchdynamo: None
  • ray_scope: last
  • ddp_timeout: 1800
  • torch_compile: False
  • torch_compile_backend: None
  • torch_compile_mode: None
  • dispatch_batches: None
  • split_batches: None
  • include_tokens_per_second: False
  • include_num_input_tokens_seen: False
  • neftune_noise_alpha: None
  • optim_target_modules: None
  • batch_eval_metrics: False
  • batch_sampler: batch_sampler
  • multi_dataset_batch_sampler: proportional

Training Logs

Epoch Step loss pair-class-dev_max_ap pair-class-test_max_ap
0 0 - 0.6426 -
0.9677 15 3.1942 0.7846 -
2.0 31 2.2259 0.8691 -
2.9677 46 1.8185 0.9075 -
4.0 62 1.6203 0.9240 -
4.9677 77 1.4360 0.9308 -
6.0 93 1.3889 0.9351 -
6.9677 108 1.2959 0.9381 -
8.0 124 1.1657 0.9425 -
8.9677 139 1.1238 0.9439 -
10.0 155 1.0300 0.9473 -
10.9677 170 0.9543 0.9503 -
12.0 186 0.8371 0.9540 -
12.9677 201 0.8020 0.9558 -
14.0 217 0.7933 0.9579 -
14.5161 225 0.7888 0.9587 0.9587
  • The bold row denotes the saved checkpoint.

Framework Versions

  • Python: 3.10.12
  • Sentence Transformers: 3.0.1
  • Transformers: 4.41.2
  • PyTorch: 2.1.2+cu121
  • Accelerate: 0.32.1
  • Datasets: 2.19.1
  • Tokenizers: 0.19.1

Citation

BibTeX

Sentence Transformers

@inproceedings{reimers-2019-sentence-bert,
    title = "Sentence-BERT: Sentence Embeddings using Siamese BERT-Networks",
    author = "Reimers, Nils and Gurevych, Iryna",
    booktitle = "Proceedings of the 2019 Conference on Empirical Methods in Natural Language Processing",
    month = "11",
    year = "2019",
    publisher = "Association for Computational Linguistics",
    url = "https://arxiv.org/abs/1908.10084",
}
Downloads last month
1
Safetensors
Model size
118M params
Tensor type
F32
·
Inference Examples
This model does not have enough activity to be deployed to Inference API (serverless) yet. Increase its social visibility and check back later, or deploy to Inference Endpoints (dedicated) instead.

Model tree for srikarvar/multilingual-e5-small-pairclass-2

Finetuned
(56)
this model

Evaluation results