Model Card for Model ID
Model Details
Model Description
This model is a fine-tuned version of google/gemma-2-2b-it, designed to answer questions related to champions from the online game League of Legends. By using a custom dataset of champion stories and lore, the model is optimized to generate responses in Korean.
- Developed by: Dohyun Kim, Jongbong Lee, Jaehoon Kim
- Model type: LLM Finetuned Model
- Language(s) (NLP): Korean
- Finetuned from model [optional]: google/gemma-2-2b-it
Training Details
Training Data
The dataset was created by scraping champion lore from the official League of Legends website, transforming the content into Q&A format using large language models. You can find the dataset at fanlino/lol-champion-qa.
# List of champions
champions = [
"aatrox", "ahri", "akali", "akshan", "alistar", "amumu", "anivia", "annie", "aphelios", "ashe",
"aurelionsol", "azir", "bard", "belveth", "blitzcrank", "brand", "braum", "caitlyn", "camille",
"cassiopeia", "chogath", "corki", "darius", "diana", "drmundo", "draven", "ekko", "elise",
"evelynn", "ezreal", "fiddlesticks", "fiora", "fizz", "galio", "gangplank", "garen", "gnar",
"gragas", "graves", "gwen", "hecarim", "heimerdinger", "illaoi", "irelia", "ivern", "janna",
"jarvaniv", "jax", "jayce", "jhin", "jinx", "kaisa", "kalista", "karma", "karthus", "kassadin",
"katarina", "kayle", "kayn", "kennen", "khazix", "kindred", "kled", "kogmaw", "leblanc", "leesin",
"leona", "lillia", "lissandra", "lucian", "lulu", "lux", "malphite", "malzahar", "maokai",
"masteryi", "milio", "missfortune", "mordekaiser", "morgana", "naafiri", "nami", "nasus",
"nautilus", "neeko", "nidalee", "nilah", "nocturne", "nunu", "olaf", "orianna", "ornn",
"pantheon", "poppy", "pyke", "qiyana", "quinn", "rakan", "rammus", "reksai", "rell", "renataglasc",
"renekton", "rengar", "riven", "rumble", "ryze", "samira", "sejuani", "senna", "seraphine", "sett",
"shaco", "shen", "shyvana", "singed", "sion", "sivir", "skarner", "sona", "soraka", "swain",
"sylas", "syndra", "tahmkench", "taliyah", "talon", "taric", "teemo", "thresh", "tristana",
"trundle", "tryndamere", "twistedfate", "twitch", "udyr", "urgot", "varus", "vayne", "veigar",
"velkoz", "vex", "vi", "viego", "viktor", "vladimir", "volibear", "warwick", "monkeyking", "xayah",
"xerath", "xinzhao", "yasuo", "yone", "yorick", "yuumi", "zac", "zed", "ziggs", "zilean", "zoe", "zyra"
]
print(f"The total number of champions: {len(champions)}")
# Base URL for the champion story in Korean
base_url = "https://universe.leagueoflegends.com/ko_KR/story/champion/"
# Function to scrape the Korean name and background story of a champion
def scrape_champion_data(champion):
url = base_url + champion + "/"
response = requests.get(url)
if response.status_code == 200:
soup = BeautifulSoup(response.content, 'html.parser')
# Extract the Korean name from the <title> tag
korean_name = soup.find('title').text.split('-')[0].strip()
# Extract the background story from the meta description
meta_description = soup.find('meta', {'name': 'description'})
if meta_description:
background_story = meta_description.get('content').replace('\n', ' ').strip()
else:
background_story = "No background story available"
return korean_name, background_story
else:
return None, None
# Open the CSV file for writing
with open("champion_bs.csv", "w", newline='', encoding='utf-8') as csvfile:
# Define the column headers
fieldnames = ['url-name', 'korean-name', 'background-story']
# Create a CSV writer object
writer = csv.DictWriter(csvfile, fieldnames=fieldnames)
# Write the header
writer.writeheader()
# Scrape data for each champion and write to CSV
for champion in champions:
korean_name, background_story = scrape_champion_data(champion)
if korean_name and background_story:
writer.writerow({
'url-name': champion,
'korean-name': korean_name,
'background-story': background_story
})
print(f"Scraped data for {champion}: {korean_name}")
else:
print(f"Failed to scrape data for {champion}")
print("Data scraping complete. Saved to champion_bs.csv")
Training Procedure
Environment Setup
The model was fine-tuned using a quantization-aware training approach to optimize memory usage and computational efficiency. The environment was set up with 4-bit quantization using torch and transformers, and the LoRA (Low-Rank Adaptation) method was applied to specific layers of the model to improve task performance.
import torch
from transformers import AutoTokenizer, AutoModelForCausalLM, BitsAndBytesConfig
model_id = "google/gemma-2-2b-it"
bnb_config = BitsAndBytesConfig(
load_in_4bit=True,
bnb_4bit_use_double_quant=True,
bnb_4bit_quant_type="nf4",
bnb_4bit_compute_dtype=torch.bfloat16
)
model = AutoModelForCausalLM.from_pretrained(
model_id,
quantization_config=qlora_config,
device_map="auto",
attn_implementation=attn_implementation
)
tokenizer = AutoTokenizer.from_pretrained(model_id, trust_remote_code=True)
QLoRA Setting
from peft import LoraConfig, get_peft_model
def find_linear_layers(model):
linear_layers = set()
for name, module in model.named_modules():
if isinstance(module, bnb.nn.Linear4bit):
names = name.split('.')
layer_name = names[-1]
if layer_name != 'lm_head':
linear_layers.add(layer_name)
return list(linear_layers)
lora_target_modules = find_linear_layers(model)
lora_config = LoraConfig(
r=64,
lora_alpha=32,
target_modules=lora_target_modules,
lora_dropout=0.05,
bias="none",
task_type="CAUSAL_LM"
)
model = get_peft_model(model, lora_config)
Loading Training Datasets
To prepare the training data, the champion stories were converted into a question-answer format. The dataset was structured using a chat-style template to ensure compatibility with the Gemma2 modelβs architecture.
data = [
{ "q": "λλΆλΆμ νλ©Έμκ° μκ³ μλ νμ€ μ°¨μμ 무μμΈκ°?", "a": "λλΆλΆμ νλ©Έμλ λ¬Όμ§ μΈκ³λΌλ νλμ νμ€ μ°¨μλ§ μκ³ μλ€." },
{ "q": "μ€λ‘λΌκ° μ λ
μμ μ λ³΄λΈ κ³³μ μ΄λμΈκ°?", "a": "μ€λ‘λΌλ λΈλ€Όλ λΆμ‘±μ κ³ ν₯μ΄μ μΈλ΄ λ§μμΈ μ무μ°μμ μ λ
μμ μ 보λλ€." },
{ "q": "μ€λ‘λΌκ° μμ μ μ΄ν΄ν΄μ€ μ μΌν κ°μ‘± ꡬμ±μμ λꡬμΈκ°?", "a": "μ€λ‘λΌμ μ΄λͺ¨ν λ¨Έλ νλΆμ°κ° μ€λ‘λΌλ₯Ό μ§μ¬μΌλ‘ λ°μλ€μλ€." },
...]
qa_df = pd.DataFrame(data, columns=["q", "a"])
qa_dataset = Dataset.from_pandas(qa_df)
We use gemma2's chat format template.
<start_of_turn>user
{Qustion}<end_of_turn>
<start_of_turn>model
{Answer}
<end_of_turn>
And we write a function to structure a dataset.
def format_chat_prompt(example):
chat_data = [
{"role": "user", "content": example["q"]},
{"role": "assistant", "content": example["a"]}
]
example["text"] = tokenizer.apply_chat_template(chat_data, tokenize=False)
return example
dataset = dataset.map(format_chat_prompt, num_proc=4)
The actual format results in the following text.
<bos>
<start_of_turn>user
μνΈλ‘μ€κ° νμ΄λ κ³³μ μ΄λμΈκ°?<end_of_turn>
<start_of_turn>model
μνΈλ‘μ€λ μ리λ§μμ νμ΄λ¬λ€.<end_of_turn>'}
Training Model
The model was then trained using the SFTTrainer class, with settings such as a batch size of 1, 10 gradient accumulation steps, and 10 epochs. The optimizer used was paged_adamw_32bit.
import transformers
from trl import SFTTrainer
# Training arguments
training_args = TrainingArguments(
output_dir=OUTPUT_MODEL_PATH,
per_device_train_batch_size=1, # steps_per_epoch = ceil(total_samples / (batch_size * gradient_accumulation_steps))
gradient_accumulation_steps=10, # total_samples means len(dataset)
num_train_epochs=10,
learning_rate=2e-4,
fp16=False,
bf16=False,
logging_steps=len(dataset)//10,
optim="paged_adamw_32bit",
logging_dir="./logs",
save_strategy="epoch",
evaluation_strategy="no",
do_eval=False,
group_by_length=True,
report_to="none"
)
# Initialize trainer
trainer = SFTTrainer(
model=model,
train_dataset=dataset,
peft_config=lora_config,
dataset_text_field="text",
max_seq_length=512,
tokenizer=tokenizer,
args=training_args,
packing=False,
)
# Train the model
trainer.train()
Testing Model
We created a helper function to ask the question in the format.
def generate_response(prompt, model, tokenizer, temperature=0.1):
formatted_prompt=f"""<start_of_turn>user
{prompt}<end_of_turn>
<start_of_turn>model
"""
inputs = tokenizer(formatted_prompt, return_tensors="pt").to("cuda")
outputs = model.generate(
**inputs,
max_new_tokens=256,
do_sample=temperature > 0,
temperature=temperature
)
return tokenizer.decode(outputs[0], skip_special_tokens=False)
Question
prompt = "μ‘°μ΄λ μμ°λ λ¦¬μ¨ μνν
λ¬΄μ¨ μ½μμ νμ΄?"
response = generate_response(prompt, model, tokenizer)
print(response)
μμ λ΅λ³
μ‘°μ΄λ μμ°λ λ¦¬μ¨ μμ μ§ν€κΈ° μν΄ ν μ μλ κ²μ 무μμ΄λ ν΄μ£Όλ¦¬λΌ μ½μνλ€.
κ²°κ³Ό(Finetuned Model)
<bos><start_of_turn>user
μ‘°μ΄λ μμ°λ λ¦¬μ¨ μνν
λ¬΄μ¨ μ½μμ νμ΄?<end_of_turn>
<start_of_turn>model
μ‘°μ΄λ μμ°λ λ¦¬μ¨ μμ μ§ν€κΈ° μν΄ ν μ μλ κ²μ 무μμ΄λ ν΄μ£Όλ¦¬λΌ μ½μνλ€.<end_of_turn>
κ²°κ³Ό(Base Model)
<bos><start_of_turn>user
μ‘°μ΄λ μμ°λ λ¦¬μ¨ μνν
λ¬΄μ¨ μ½μμ νμ΄?<end_of_turn>
<start_of_turn>model
μ‘°μ΄λ μμ°λ λ¦¬μ¨ μνν
**λ¬΄μ¨ μ½μμ νλμ§**μ λν μ 보λ μμ§ μλ €μ§μ§ μμμ΅λλ€.
μ‘°μ΄λ μμ°λ λ¦¬μ¨ μνν
μ½μμ νλμ§μ λν μ΄μΌκΈ°λ λͺ κ°μ§ μ ννλ λ°κ³Ό κ΄λ ¨λ κ²μΌλ‘ 보μ
λλ€.
* **μμ°λ λ¦¬μ¨ μ:** μ΄κ²μ 2023λ
1μμ μΆμλ μμ°λ λ¦¬μ¨ μμ μ΄λ¦μ
λλ€.
* **μ‘°μ΄:** μ΄κ²μ 2023λ
1μμ μΆμλ μμ°λ λ¦¬μ¨ μμ μ΄λ¦μ
λλ€.
μ΄λ¬ν λ°λ€μ ν₯λ―Έλ‘μ§λ§, μ€μ λ‘ μ‘°μ΄λ μμ°λ λ¦¬μ¨ μνν
λ¬΄μ¨ μ½μμ νλμ§μ λν μ νν μ 보λ μμ§ μλ €μ§μ§ μμμ΅λλ€.
<end_of_turn>
In contrast, the base modelβs response was less accurate, highlighting the improvements made through fine-tuning.
Summary
The code discussed above can be found at the following link: lol_lore.ipynb
- Downloads last month
- 15